[2]
Gualerzi, C.O.; Brandi, L.; Fabbretti, A.; Pon, C.L. Antibiotics: Targets, Mechanisms and Resistance; Wiley-VCH Verlag GmbH
& Co. KGaA: Weinheim, Germany. , 2014.
[3]
Brunton, L.; Chabner, B.; Knollman, B. Goodman & Gilman’s The Pharmacological Basis of Therapeutics, 12th ed; McGraw-Hill Professional: New York, 2011.
[4]
Docquier, J.D.; Mangani, S. An update on β-lactamase inhibitor discovery and development. Drug Resist. Updat., 2018, 36, 13-29.
[5]
Foster, T.J. Can β-lactam antibiotics be resurrected to combat MRSA? Trends Microbiol., 2019, 1, 26-38.
[6]
Liu, X.; Huang, D.; Lai, C.; Zeng, G.; Qin, L.; Zhang, C.; Yi, H.; Li, B.; Deng, R.; Liu, S.; Zhang, Y. Recent advances in sensors for tetracycline antibiotics and their applications. Trends Analyt. Chem., 2018, 109, 260-274.
[7]
Wang, Q.; Li, X.; Yang, Q.; Chen, Y.; Du, B. Evolution of microbial community and drug resistance during enrichment of tetracycline-degrading bacteria. Ecotoxicol. Environ. Saf., 2019, 171, 746-752.
[8]
Mingeot-Leclercq, M.P.; Glupczynski, Y.; Tulkens, P.M. Aminoglycosides: activity and resistance. Antimicrob. Agents Chemother., 1999, 43, 727-737.
[9]
Singh, N.; Chaudhury, S.; Liu, R. AbdulHameed, M.D.M.; Tawa, G.; Wallqvist, A. QSAR classification model for antibacterial compounds and its use in virtual screening. J. Chem. Inf. Model., 2012, 52, 2559-2569.
[10]
Benveniste, R.; Davies, J. Structure-activity relationships among the aminoglycoside antibiotics: role of hydroxyl and amino groups. Antimicrob. Agents Chemother., 1973, 4, 402-409.
[11]
Cashman, D.J.; Rife, J.P.; Kellog, G.E. Which aminoglycoside ring is most important for binding? A hydropathic analysis of gentamicin, paromomycin, and analogues. Bioorg. Med. Chem. Lett., 2001, 11, 119-122.
[12]
Afshar, M.; Prescott, C.D.; Varani, G. Structure-based and combinatorial search for new RNA-binding drugs. Curr. Opin. Biotechnol., 1999, 10, 59-63.
[13]
Hermann, T.; Westhof, E. Aminoglycoside binding to the hammerhead ribozyme: a general model for the interaction of cationic antibiotics with RNA. J. Mol. Biol., 1998, 276, 903-912.
[14]
Ma, C.; Baker, N.A.; Joseph, S.; McCammon, J.A. binding of aminoglycoside antibiotics to the small ribosomal subunit: A continuum electrostatics investigation. J. Am. Chem. Soc., 2002, 124, 1438-1442.
[15]
Vaiana, A.C.; Westhof, E.; Auffinger, P. A molecular dynamics simulation study of an aminoglycoside/A-site RNA complex: Conformational and hydration patterns. Biochimie, 2006, 88, 1061-1073.
[16]
Huang, L.; Massa, L.; Karle, J. Drug target interaction energies by the kernel energy method in aminoglycoside drugs and ribosomal A site RNA targets. Proc. Natl. Acad. Sci. , 2007, 104, 4261-4266.
[17]
Bober, L.; Kawczak, P.; Bączek, T. QSAR Analysis of Compounds Exhibiting General Anesthetics’ Properties. Lett. Drug Des. Discov., 2012, 9, 595-603.
[18]
Belka, M.; Konieczna, L.; Kawczak, P.; Ciesielski, T.; Slawinski, J.; Baczek, T. The chemometric evaluation of antitumor activity of novel benzensulfonamide derivatives based on their Physio-chemical Properties. Lett. Drug Des. Discov., 2012, 3, 288-294.
[19]
Bober, L.; Kawczak, P.; Bączek, T. Pharmacological Classification and Activity Evaluation of Furan and Thiophene Amide Derivatives Applying Semi-Empirical ab initio Molecular Modeling Methods. Int. J. Mol. Sci., 2012, 13, 6665-6678.
[20]
Belka, M.; Sławinski, J.; Konieczna, L.; Kawczak, P.; Ciesielski, T.; Baczek, T. Antitumor activity of novel benzensulfonamide derivatives in view of their physiochemical properties searched by principal component analysis. Med. Chem., 2013, 9, 517-525.
[21]
Stasiak, J.; Koba, M.; Bober, L.; Kawczak, P. Baczek. T. The Comparison Between the Calculated and HPLC-Predicted Lipophilicity Parameters for Selected Groups of Drugs. Comb. Chem. High Throughput Screen., 2013, 16, 603-617.
[22]
Kawczak, P.; Bober, L.; Bączek, T. Biological Activity of Compounds Exhibiting Local Anesthetics’s Properties Evaluated by QSAR Approach. Curr. Pharm. Anal., 2014, 10, 255-262.
[23]
Kawczak, P.; Bober, L.; Bączek, T. QSPR analysis of some agonists and antagonists of α-adrenergic receptors. Med. Chem. Res., 2015, 24, 372-382.
[24]
Ciura, K.; Belka, M.; Kawczak, P.; Bączek, T.; Markuszewski, M.J.; Nowakowska, J. Combined computational-experimental approach to predict blood-brain barrier (BBB) permeation based on “green” salting-out thin layer chromatography supported by simple molecular descriptors. J. Pharm. Biomed. Anal., 2017, 143, 214-221.
[25]
Kawczak, P.; Bober, L.; Bączek, T. Activity evaluation of some psychoactive drugs with the application of QSAR/QSPR modeling methods. Med. Chem. Res., 2018, 27, 2279-2286.
[26]
Kawczak, P.; Bober, L.; Bączek, T. Application of QSAR Analysis and Different Quantum Chemical Calculation Methods in Activity Evaluation of Selected Fluoroquinolones. Comb. Chem. High Throughput Screen., 2018, 21, 468-475.
[30]
Chow, A.W.; Patten, V.; Bednorz, D. Susceptibility of Campylobacter fetus to twenty-two antimicrobial agents. Antimicrob. Agents Chemother., 1978, 13, 416-418.
[31]
Sabath, L.D.; Garner, C.; Wilcox, C.; Finland, M. Susceptibility of Staphylococcus aureus and Staphylococcus epidermidis to 65 Antibiotics. Antimicrob. Agents Chemother., 1976, 9, 962-969.
[32]
Allen, N.E.; Alborn, W.E., Jr; Kirst, H.A.; Toth, J.E. Comparison of aminoglycoside antibiotics with respect to uptake and lethal activity in Escherichia coli. J. Med. Chem., 1987, 30, 333-340.
[33]
HyperChem® Computational Chemistry. Part 1 Practical Guide.
Part 2 Theory and Methods.; Hypercube Inc.: Waterloo, Ontario, 1996.
[35]
Todeschini, R.; Consonni, V. Molecular Descriptors for
Chemoinformatics: Volume I: Alphabetical Listing/Volume II:
Appendices, References, Vol. 41.; Wiley-VCH Verlag GmbH &
Co. KGaA: Weinheim, , 2010.