[1]
Chaudhuri, R.G.; Paria, S. Core/Shell nanoparticles: Classes, properties, synthesis mechanisms, characterization, and applications. Chem. Rev., 2012, 112, 2373-2433.
[2]
Polshettiwar, V.; Luque, R.; Fihri, A.; Zhu, H.; Bouhrara, M.; Basset, J.M. Magnetically recoverable nanocatalysts. Chem. Rev., 2011, 111, 3036-3075.
[3]
Karami, S.; Zeynizadeh, B.; Shokri, Z. Cellulose supported bimetallic Fe–Cu nanoparticles: A magnetically recoverable nanocatalyst for quick reduction of nitroarenes to amines in water. Cellulose, 2018, 25, 3295-3305.
[4]
Shokri, Z.; Zeynizadeh, B.; Hosseini, S.A.; Azizi, B. Magnetically nano core-shell Fe3O4@Cu(OH)x: A highly efficient and reusable catalyst for rapid and green reduction of nitro compounds. J. Iran. Chem. Soc., 2017, 14, 101-109.
[5]
Zeynizadeh, B.; Mohammadzadeh, I.; Shokri, Z.; Hosseini, S.A. Synthesis and characterization of NiFe2O4@Cu nanoparticles as a magnetically recoverable catalyst for reduction of nitroarenes to arylamines with NaBH4. J. Colloid Interface Sci., 2017, 500, 285-293.
[6]
Zeynizadeh, B.; Sepehraddin, F. Synthesis and characterization of magnetically nanoparticles of Fe3O4@APTMS@ZrCp2 as a novel and reusable catalyst for convenient reduction of nitro compounds with glycerol. J. Iran. Chem. Soc., 2017, 14, 2649-2657.
[7]
Shokri, Z.; Zeynizadeh, B.; Hosseini, S.A. One-pot reductive-acetylation of nitroarenes with NaBH4 catalyzed by separable core-shell Fe3O4@Cu(OH)x nanoparticles. J. Colloid Interface Sci., 2017, 485, 99-105.
[8]
Zhang, R.; Liu, J.; Wang, S.; Niu, J.; Xia, C.; Sun, W. Magnetic CuFe2O4 nanoparticles as an efficient catalyst for C‒O cross-coupling of phenols with aryl halides. ChemCatChem, 2011, 3, 146-149.
[9]
Shi, F.; Tse, M.K.; Zhou, S.; Pohl, M.M.; Radnik, J.R.; Hübner, S.; Jähnisch, K.; Brückner, A.; Beller, M. Green and efficient synthesis of sulfonamides catalyzed by nano-Ru/Fe3O4. J. Am. Chem. Soc., 2009, 131, 1775-1779.
[10]
Dam, B.; Nandi, S.; Pal, A.K. An efficient on-water synthesis of 1,4-dihydropyridines using Fe3O4@SiO2 nanoparticles as a reusable catalyst. Tetrahedron Lett., 2014, 55, 5236-5240.
[11]
Taher, A.; Kim, J.B.; Jung, J.Y.; Ahn, W.S.; Jin, M.J. Highly active and magnetically recoverable Pd-NHC catalyst immobilized on Fe3O4 nanoparticle-ionic liquid matrix for Suzuki reaction in water. Synlett, 2009, 2477-2482.
[12]
Zeynizadeh, B.; Sepehraddin, F. Deposited zirconocene chloride on silica-layered CuFe2O4 as a highly efficient and reusable magnetically nanocatalyst for one-pot Suzuki-Miyaura coupling reaction. J. Organomet. Chem., 2018, 856, 70-77.
[13]
Mpungose, P.P.; Vundla, Z.P.; Maguire, G.E.M.; Friedrich, H.B. The current status of heterogeneous palladium catalyzed Heck and Suzuki cross-coupling reactions. Molecules, 2018, 23, 1676.
[14]
Firouzabadi, H.; Iranpoor, N.; Gholinejad, M.; Hoseini, J. Magnetite (Fe3O4) nanoparticles‐catalyzed Sonogashira-Hagihara reactions in ethylene glycol under ligand‐free conditions. Adv. Synth. Catal., 2011, 353, 125-132.
[15]
Karimi, B.; Mansouri, F.; Mirzaei, H.M. Recent applications of magnetically recoverable nanocatalysts in C-C and C-X coupling reactions. ChemCatChem, 2015, 7, 1736-1789.
[16]
Banerjee, A.G.; Kothapalli, L.P.; Sharma, P.A.; Thomas, A.B.; Nanda, R.K.; Shrivastava, S.K.; Khatanglekar, V.V. A facile microwave assisted one pot synthesis of novel xanthene derivatives as potential anti-inflammatory and analgesic agents. Arab. J. Chem., 2016, 9, S480-S489.
[17]
Hilderbrand, S.A.; Weissleder, R. One-pot synthesis of new symmetric and asymmetric xanthene dyes. Tetrahedron Lett., 2007, 48, 4383-4385.
[18]
Pohlers, G.; Scaiano, J.; Sinta, R. A novel photometric method for the determination of photoacid generation efficiencies using benzothiazole and xanthene dyes as acid sensors. Chem. Mater., 1997, 9, 3222-3230.
[19]
Knight, C.G.; Stephens, T. Xanthene-dye-labelled phosphatidyl-ethanolamines as probes of interfacial pH. Studies in phospholipid vesicles. Biochem. J., 1989, 258, 683-687.
[20]
Hatakeyama, S.; Ochi, N.; Numata, H.; Takano, S. A new route to substituted 3-methoxycarbonyldihydropyrans; Enantioselective synthesis of (–)-methyl elenolate. J. Chem. Soc. Chem. Commun., 1988, 1202-1204.
[21]
Khosropour, A.R.; Khodaei, M.M.; Moghannian, H. A facile, simple and convenient method for the synthesis of 14-alkyl or aryl-14-H-dibenzo[a, j]xanthenes catalyzed by p-TSA in solution and solvent-free conditions. Synlett, 2005, 955-958.
[22]
Jin, T.S.; Zhang, J.S.; Xiao, J.C.; Wang, A.Q.; Li, T.S. Clean synthesis of 1,8-dioxo-octahydroxanthene derivatives catalyzed by p-dodecylbene-zenesulfonic acid in aqueous media. Synlett, 2004, 866-870.
[23]
Fan, X.; Hu, X.; Zhang, X. Wang, InCl3·4H2O-promoted green preparation of xanthenedione derivatives in ionic liquids. Can. J. Chem., 2005, 83, 16-20.
[24]
Song, G.; Wang, B.; Luo, H.; Yang, L. Fe3+-montmori-llonite as a cost-effective and recyclable solid acidic catalyst for the synthesis of xanthenediones. Catal. Commun., 2007, 8, 673-676.
[25]
Das, B.; Thirupathi, P.; Reddy, K.R.; Ravikanth, B.; Nagarapu, L. An efficient synthesis of 1,8-dioxo-octahydroxanthenes using heterogeneous catalysts. Catal. Commun., 2007, 8, 535-538.
[26]
Das, B.; Thirupathi, P.; Mahender, I.; Reddy, V.S.; Rao, Y.K. Amberlyst-15: An efficient reusable heterogeneous catalyst for the synthesis of 1,8-dioxo-octahydroxanthenes and 1,8-dioxo-decahydroacridines. J. Mol. Catal. A: Chem., 2006, 247, 233-239.
[27]
Seyyedhamzeh, M.; Mirzaei, P.; Bazgir, A. Solvent-free synthesis of aryl-14H-dibenzo[a, j]xanthenes and 1,8-dioxo-octahydroxanthenes using silica sulfuric acid as catalyst. Dyes and Pigm., 2008, 76, 836-839.
[28]
Mosaddegh, E.; Islami, M.R.; Hassankhani, A. ZrOCl2·8H2O as an efficient and recyclable catalyst for the clean synthesis of xanthenedione derivatives under solvent-free conditions. Arab. J. Chem., 2012, 5, 77-80.
[29]
Tu, S.J.; Miao, C.B.; Gao, Y.; Feng, Y.J.; Feng, J.C. Microwave‐prompted reaction of cinnamonitrile derivatives with 5,5‐dimethyl‐1,3-cyclohexane-dione. Chin. J. Chem., 2002, 20, 703-706.
[30]
Li, Y.L.; Zhang, M.M.; Wang, X.S.; Shi, D.Q.; Tu, S.J.; Wei, X.Y.; Zong, Z.M. One pot three component synthesis of 9-arylpolyhydroacridine derivatives in an ionic liquid medium. J. Chem. Res., 2005, 600-602.
[31]
Tatarchuk, T.; Bououdina, M.; Vijaya, J.J.; Kennedy, L.J. Spinel ferrite nanoparticles: Synthesis, crystal structure, properties, and perspective applications. In: Nanophysics, Nanomaterials, Interface Studies, and Applications; Fesenko, O.; Yatsenko, L., Eds.; Springer, 2017; pp. 305-325.
[32]
de Paiva, J.A.C.; Graça, M.P.F.; Monteiro, J.; Macedo, M.; Valente, M. Spectroscopy studies of NiFe2O4 nanosized powders obtained using coconut water. J. Alloys Compd., 2009, 485, 637-641.
[33]
Alarifi, A.; Deraz, N.M.; Shaban, S. Structural, morphological and magnetic properties of NiFe2O4 nanoparticles. J. Alloys Compd., 2009, 486, 501-506.
[34]
Huo, J.; Wei, M. Characterization and magnetic properties of nanocrystalline nickel ferrite synthesized by hydrothermal method. Mater. Lett., 2009, 63, 1183-1184.
[35]
Sen, R.; Jain, P.; Patidar, R.; Srivastava, S.; Rana, R.S.; Gupta, N. Synthesis and characterization of nickel ferrite (NiFe2O4) nanoparticles prepared by sol-gel method. Mater. Today Proc., 2015, 2, 3750-3757.
[36]
Kadi, M.W.; Mohamed, R. Synthesis and optimization of cubic NiFe2O4 nanoparticles with enhanced saturation magnetization. Ceram. Int., 2014, 40, 227-232.
[37]
Zhang, Z.; Liu, Y.; Yao, G.; Zu, G.; Hao, Y. Synthesis and characterization of NiFe2O4 nanoparticles via solid‐state reaction. Int. J. Appl. Ceram. Technol., 2013, 10, 142-149.
[38]
Brunauer, S.; Deming, L.S.; Deming, W.E.; Teller, E. On a theory of the van der waals adsorption of gases. J. Am. Chem. Soc., 1940, 62, 1723-1732.
[39]
Lowell, S.; Shields, J.E. Powder Surface Area and Porosity; Springer: Dordrecht, 1984, pp. 14-29.
[40]
Hazeri, N.; Masoumnia, A.; Mghsoodlou, M.T.; Salahi, S.; Kangani, M.; Kianpour, S.; Kiaee, S.; Abonajmi, J. Acetic acid as an efficient catalyst for synthesis of 1,8-dioxo-octahydroxanthenes and 1,8-dioxo-decahydro-acridines. Res. Chem. Intermed., 2015, 41, 4123-4131.
[41]
Dabiri, M.; Baghbanzadeh, M.; Arzroomchilar, E. 1-Methylimidazolium triflouroacetate ([Hmim] TFA): An efficient reusable acidic ionic liquid for the synthesis of 1,8-dioxo-octahydroxanthenes and 1,8-dioxo-decahyd-roacridines. Catal. Commun., 2008, 9, 939-942.
[42]
Shen, W.; Wang, L.M.; Tian, H.; Tang, J.; Yu, J.J. Brønsted acidic imidazolium salts containing perfluoro-alkyl tails catalyzed one-pot synthesis of 1,8-dioxo-decahydroacridines in water. J. Fluor. Chem., 2009, 130, 522-527.
[43]
Amoozadeh, A.; Golian, S.; Rahmani, S. TiO2-coated magnetite nanoparticle-supported sulfonic acid as a new, efficient, magnetically separable and reusable heterogeneous solid acid catalyst for multicomponent reactions. RSC Advances, 2015, 5, 45974-45982.
[44]
Saha, M.; Kumar Pal, A. Solvent free solid support synthesis of arylmethylene bis(3-Hydroxy-2-cyclohex-ene-1-ones) and xanthenediones derivatives by microwave irradiation. Iran. J. Org. Chem., 2010, 3, 423-429.
[45]
Maghsoodlou, M.T.; Habibi-Khorassani, S.M.; Shahkarami, Z.; Maleki, N.; Rostamizadeh, M. An efficient synthesis of 2,2′-arylmethylene bis(3-hydroxy-5,5-dimethyl-2-cyclohexene-1-one) and 1,8-dioxo-octa-hydroxanthenes using ZnO and ZnO-acetyl chloride. Chin. Chem. Lett., 2010, 21, 686-689.