[1]
Alonso, D.M.; Bond, J.Q.; Dumesic, J.A. Catalytic conversion of biomass to biofuels. Green Chem., 2010, 12(9), 1493-1513.
[2]
Wyman, C.E.; Dale, B.E.; Elander, R.T.; Holtzapple, M.; Ladisch, M.R.; Lee, Y.Y. Coordinated development of leading biomass pretreatment technologies. Bioresour. Technol., 2005, 96(18), 1959-1966.
[3]
Alonso, D.M.; Wettstein, S.G.; Dumesic, J.A. Bimetallic catalysts for upgrading of biomass to fuels and chemicals. Chem. Soc. Rev., 2012, 41(24), 8075-8098.
[4]
Gilkey, M.J.; Xu, B. Heterogeneous catalytic transfer hydrogenation as an effective pathway in biomass upgrading. ACS Catal., 2016, 6(3), 1420-1436.
[5]
Küçük, M.M.; Demirbaş, A. Biomass conversion processes. Energy Convers. Manage., 1997, 38(2), 151-165.
[6]
Demirbaş, A. Biomass resource facilities and biomass conversion processing for fuels and chemicals. Energy Convers. Manage., 2001, 42(11), 1357-1378.
[7]
Bridgwater, A.V. Review of fast pyrolysis of biomass and product upgrading. Biomass Bioenergy, 2012, 38, 68-94.
[8]
Molino, A.; Chianese, S.; Musmarra, D. Biomass gasification technology: The state of the art overview. J. Energy Chem., 2016, 25(1), 10-25.
[9]
Ni, M.; Leung, D.Y.C.; Leung, M.K.H.; Sumathy, K. An overview of hydrogen production from biomass. Fuel Process. Technol., 2006, 87(5), 461-472.
[10]
de Lasa, H.; Salaices, E.; Mazumder, J.; Lucky, R. Catalytic steam gasification of biomass: Catalysts, thermodynamics and kinetics. Chem. Rev., 2011, 111(9), 5404-5433.
[11]
Sikarwar, V.S.; Zhao, M.; Clough, P.; Yao, J.; Zhong, X.; Memon, M.Z.; Shah, N.; Anthony, E.J.; Fennell, P.S. An overview of advances in biomass gasification. Energy Environ. Sci., 2016, 9(10), 2939-2977.
[12]
Kirubakaran, V.; Sivaramakrishnan, V.; Nalini, R.; Sekar, T.; Premalatha, M.; Subramanian, P. A review on gasification of biomass. Renew. Sustain. Energy Rev., 2009, 13(1), 179-186.
[13]
Corte, P.; Lacoste, C.; Traverse, J.P. Gasification and catalytic conversion of biomass by flash pyrolysis. J. Anal. Appl. Pyrolysis, 1985, 7, 323-335.
[14]
Luo, S.; Xiao, B.; Guo, X.; Hu, Z.; Liu, S.; He, M. Hydrogen-rich gas from catalytic steam gasification of biomass in a fixed bed reactor: Influence of particle size on gasification performance. Int. J. Hydrogen Energy, 2009, 34(3), 1260-1264.
[15]
Lv, P.M.; Xiong, Z.H.; Chang, J.; Wu, C.Z.; Chen, Y.; Zhu, J.X. An experimental study on biomass air-steam gasification in a fluidized bed. Bioresour. Technol., 2004, 95(1), 95-101.
[16]
Parthasarathy, P.; Narayanan, K.S. Hydrogen production from steam gasification of biomass: Influence of process parameters on hydrogen yield-A review. Renew. Energy, 2014, 66, 570-579.
[17]
Kunkes, E.L.; Simonetti, D.A.; West, R.M.; Serrano-Ruiz, J.C.; Gärtner, C.A.; Dumesic, J.A. Catalytic conversion of biomass to monofunctional hydrocarbons and targeted liquid-fuel classes. Science, 2008, 322(5900), 417-421.
[18]
Gunawardena, D.A.; Fernando, S.D. Catalytic conversion of glucose micropyrolysis vapors in methane-using isotope labeling to reveal reaction pathways. Energ. Technol., 2017, 5(5), 708-714.
[19]
Morf, P.O. Secondary reactions of tar during thermochemical biomass conversion; Swiss Federal Institute of Technology Zurich: Switzerland, 2001.
[20]
Behrendt, F.; Neubauer, Y.; Oevermann, M.; Wilmes, B.; Zobel, N. Direct Liquefaction of Biomass. Chem. Eng. Technol., 2008, 31(5), 667-677.
[21]
He, B.J.; Zhang, Y.; Funk, T.L.; Riskowski, G.L.; Yin, Y. Thermochemical conversion of swine manure: An alternatice process for waste treatment and renewable energy production. Transactions of the ASAE, 2000, 43(6), 1827-1833.
[22]
Kruse, A.; Maniam, P.; Spieler, F. Influence of proteins on the hydrothermal gasification and liquefaction of biomass. 2. Model compounds. Ind. Eng. Chem. Res., 2007, 46, 87-96.
[23]
Chornet, E.; Overend, R.P. Biomass Liquefaction: An Overview. In: Fundamentals of Thermochemical Biomass Conversion; Mudge, L.; Milne, T., Eds.; Elsevier Applied Science Publishers Ltd: London, 1985; pp. 967-968.
[24]
Bobleter, O. Hydrothermal degradation of polymers derived from plants. Prog. Polym. Sci., 1994, 19, 797-841.
[25]
Sajiki, H.; Mori, A.; Mizusaki, T.; Ikawa, T.; Maegawa, T.; Hirota, K. Pd/C-Catalyzed deoxygenation of phenol derivatives using mg metal and MeOH in the Presence of NH4OAc. Org. Lett., 2006, 8(5), 987-990.
[26]
Van de Vyver, S.; Geboers, J.; Jacobs, P.A.; Sels, B.F. Recent advances in the catalytic conversion of cellulose. ChemCatChem, 2011, 3(1), 82-94.
[27]
Zhang, J.; Liu, X.; Sun, M.; Ma, X.; Han, Y. Direct conversion of cellulose to glycolic acid with a phosphomolybdic acid catalyst in a water medium. ACS Catal., 2012, 2(8), 1698-1702.
[28]
Rogalinski, T.; Liu, K.; Albrecht, T.; Brunner, G. Hydrolysis kinetics of biopolymers in subcritical water. J. Supercrit. Fluids, 2008, 46(3), 335-341.
[29]
Shu-Lai Mok, W.; Antal, M.J. Uncatalyzed solvolysis of whole biomass hemicellulose by hot compressed liquid water. Ind. Eng. Chem. Res., 1992, 31, 1157-1161.
[30]
Zhang, B.; Huang, H.J.; Ramaswamy, S. Reaction kinetics of the hydrothermal treatment of lignin. Appl. Biochem. Biotechnol., 2008, 147(1-3), 119-131.
[31]
dos Santos, J.B.; da Silva, F.L.; Altino, F.M.R.S.; da Silva Moreira, T.; Meneghetti, M.R.; Meneghetti, S.M.P. Cellulose conversion in the presence of catalysts based on Sn(iv). Catal. Sci. Technol., 2013, 3(3), 673-678.
[32]
Liu, A.; Park, Y.; Huang, Z.; Wang, B.; Ankumah, R.; Biswas, P. Product identification and distribution from hydrothermal conversion of walnut shells. Energy Fuels, 2006, 20, 446-454.
[33]
Zhou, D.; Zhang, L.; Zhang, S.; Fu, H.; Chen, J. Hydrothermal liquefaction of macroalgae enteromorpha prolifera to Bio-oil. Energy Fuels, 2010, 24(7), 4054-4061.
[34]
Yin, S.; Dolan, R.; Harris, M.; Tan, Z. Subcritical hydrothermal liquefaction of cattle manure to bio-oil: Effects of conversion parameters on bio-oil yield and characterization of bio-oil. Bioresour. Technol., 2010, 101(10), 3657-3664.
[35]
Sugano, M.; Takagi, H.; Hirano, K.; Mashimo, K. Hydrothermal liquefaction of plantation biomass with two kinds of wastewater from paper industry. J. Mater. Sci., 2007, 43(7), 2476-2486.
[36]
Qu, Y.; Wei, X.; Zhong, C. Experimental study on the direct liquefaction of Cunninghamia lanceolata in water. Energy, 2003, 28(7), 597-606.
[37]
Shuping, Z.; Yulong, W.; Mingde, Y.; Kaleem, I.; Chun, L.; Tong, J. Production and characterization of bio-oil from hydrothermal liquefaction of microalgae Dunaliella tertiolecta cake. Energy, 2010, 35(12), 5406-5411.
[38]
Dutta, S.; De, S.; Alam, M.I.; Abu-Omar, M.M.; Saha, B. Direct conversion of cellulose and lignocellulosic biomass into chemicals and biofuel with metal chloride catalysts. J. Catal., 2012, 288, 8-15.
[39]
Akhtar, J.; Amin, N.A.S. A review on process conditions for optimum bio-oil yield in hydrothermal liquefaction of biomass. Renew. Sustain. Energy Rev., 2011, 15(3), 1615-1624.
[40]
Mascal, M.; Nikitin, E.B. Direct, high-yield conversion of cellulose into biofuel. Angew. Chem. Int. Ed. Engl., 2008, 47(41), 7924-7926.
[41]
Tan, X.; Deng, W.; Liu, M.; Zhang, Q.; Wang, Y. Carbon nanotube-supported gold nanoparticles as efficient catalysts for selective oxidation of cellobiose into gluconic acid in aqueous medium. Chem. Commun.(Camb) , 2009, (46), 7179-7181.
[42]
Sangon, S.; Ratanavaraha, S.; Ngamprasertsith, S.; Prasassarakich, P. Coal liquefaction using supercritical toluene-tetralin mixture in a semi-continuous reactor. Fuel Process. Technol., 2006, 87(3), 201-207.
[43]
Kabyemela, B.; Takigawa, M.; Adschiri, T.; Malaluan, R.; Arai, K. Mechanism and kinetics of cellobiose decomposition in sub- and supercritical water. Ind. Eng. Chem. Res., 1998, 37, 357-361.
[44]
Kabyemela, B.; Adschiri, T.; Malaluan, R.; Arai, K. Kinetics of glucose epimerization and decomposition in subcritical and supercritical water. Ind. Eng. Chem. Res., 1997, 36, 1552-1558.
[45]
Kersten, S.; Potic, B.; Prins, W.; Van Swaaij, W. Gasification of model compounds and wood in hot compressed water. Ind. Eng. Chem. Res., 2006, 45, 4169-4177.
[46]
Toor, S.S.; Rosendahl, L.; Rudolf, A. Hydrothermal liquefaction of biomass: A review of subcritical water technologies. Energy, 2011, 36(5), 2328-2342.
[47]
Boocock, D. Further aspects of powdered poplar wood liquefaction by aqueous pyrolysis. Can. J. Chem. Eng., 1985, 63(4), 627-633.
[48]
Xu, W.; Wang, H.; Liu, X.; Ren, J.; Wang, Y.; Lu, G. Direct catalytic conversion of furfural to 1,5-pentanediol by hydrogenolysis of the furan ring under mild conditions over Pt/CO2AlO4 catalyst. Chem. Commun.(Camb) , 2011, 47(13), 3924-3926.
[49]
Yang, Y.; Du, Z.; Huang, Y.; Lu, F.; Wang, F.; Gao, J.; Xu, J. Conversion of furfural into cyclopentanone over Ni-Cu bimetallic catalysts. Green Chem., 2013, 15(7), 1932-1940.
[50]
Bahng, M.K.; Mukarakate, C.; Robichaud, D.J.; Nimlos, M.R. Current technologies for analysis of biomass thermochemical processing: A review. Anal. Chim. Acta, 2009, 651(2), 117-138.
[51]
Neves, D.; Thunman, H.; Matos, A.; Tarelho, L.; Gómez-Barea, A. Characterization and prediction of biomass pyrolysis products. Pror. Energy Combust. Sci., 2011, 37(5), 611-630.
[52]
Bridgwater, A.V.; Meier, D.; Radlein, D. An overview of fast pyrolysis of biomass. Org. Geochem., 1999, 30, 1479-1493.
[53]
Mettler, M.S.; Vlachos, D.G.; Dauenhauer, P.J. Top ten fundamental challenges of biomass pyrolysis for biofuels. Energy Environ. Sci., 2012, 5(7), 77-97.
[54]
French, R.; Czernik, S. Catalytic pyrolysis of biomass for biofuels production. Fuel Process. Technol., 2010, 91(1), 25-32.
[55]
Su-Ping, Z. Study of hydrodeoxygenation of bio-oil from the fast pyrolysis of biomass. Energy Sources, 2003, 25(1), 57-65.
[56]
Elliott, D. Historical developments in hydroprocessing bio-oils. Energy Fuels, 2007, 21, 1792-1815.
[57]
Corma, A.; Huber, G.; Sauvanaud, L.; Oconnor, P. Processing biomass-derived oxygenates in the oil refinery: Catalytic cracking (FCC) reaction pathways and role of catalyst. J. Catal., 2007, 247(2), 307-327.
[58]
He, P.; Song, H. Catalytic conversion of biomass by natural gas for oil quality upgrading. Ind. Eng. Chem. Res., 2014, 53, 15862-15870.
[59]
Xiao, Y.; He, P.; Cheng, W.; Liu, J.; Shan, W.; Song, H. Converting solid wastes into liquid fuel using a novel methanolysis process. Waste Manag., 2016, 49, 304-310.
[60]
He, P.; Song, H. Catalytic conversion of biomass by natural gas for oil quality upgrading. Ind. Eng. Chem. Res., 2014, 53(41), 15862-15870.
[61]
George, W.; Huber, S.I.; Avelino, C. Synthesis of transportation fuels from biomass: Chemistry, catalysts, and engineering. Chem. Rev., 2006, 106(9), 4044-4098.
[62]
Adjaye, J.D.; Bakhshi, N.N. Catalytic conversion of a biomass-derived oil to fuels and chemicals I: Model compound studies and reaction pathways. Biomass Bioenergy, 1995, 8(3), 131-149.
[63]
Zaidi, H.A.; Pant, K.K. Catalytic conversion of methanol to gasoline range hydrocarbons. Catal. Today, 2004, 96(3), 155-160.
[64]
Bjorgen, M.; Svelle, S.; Joensen, F.; Nerlov, J.; Kolboe, S.; Bonino, F.; Palumbo, L.; Bordiga, S.; Olsbye, U. Conversion of methanol to hydrocarbons over zeolite H-ZSM-5: On the origin of the olefinic species. J. Catal., 2007, 249(2), 195-207.
[65]
Narula, C.K.; Li, Z.; Casbeer, E.M.; Geiger, R.A.; Moses-Debusk, M.; Keller, M.; Buchanan, M.V.; Davison, B.H. Heterobimetallic Zeolite, InV-ZSM-5, enables efficient conversion of biomass derived ethanol to renewable hydrocarbons. Sci. Rep., 2015, 5, 16039.
[66]
Viswanadham, N.; Saxena, S.K.; Kumar, J.; Sreenivasulu, P.; Nandan, D. Catalytic performance of nano crystalline H-ZSM-5 in ethanol to gasoline (ETG) reaction. Fuel, 2012, 95, 298-304.
[67]
Zhou, C.H.; Beltramini, J.N.; Fan, Y.X.; Lu, G.Q. Chemoselective catalytic conversion of glycerol as a biorenewable source to valuable commodity chemicals. Chem. Soc. Rev., 2008, 37(3), 527-549.
[68]
Wang, A.; He, P.; Yung, M.; Zeng, H.; Qian, H.; Song, H. Catalytic co-aromatization of ethanol and methane. Appl. Catal. B, 2016, 198, 480-492.
[69]
Austin, D.; Wang, A.; He, P.; Qian, H.; Zeng, H.; Song, H. Catalytic valorization of biomass derived glycerol under methane: Effect of catalyst synthesis method. Fuel, 2018, 216, 218-226.
[70]
Galadima, A.; Muraza, O. Zeolite catalysts in upgrading of bioethanol to fuels range hydrocarbons: A review. J. Ind. Eng. Chem., 2015, 31, 1-14.
[71]
Basagiannis, A.C.; Verykios, X.E. Catalytic steam reforming of acetic acid for hydrogen production. Int. J. Hydrogen Energy, 2007, 32, 3343-3355.
[72]
Chen, L.; Zhu, Y.; Zheng, H.; Zhang, C.; Li, Y. Aqueous-phase hydrodeoxygenation of propanoic acid over the Ru/ZrO2 and Ru–Mo/ZrO2 catalysts. Appl. Catal. A Gen., 2012, 411-412, 95-104.
[73]
Chen, L.; Zhu, Y.; Zheng, H.; Zhang, C.; Zhang, B.; Li, Y. Aqueous-phase hydrodeoxygenation of carboxylic acids to alcohols or alkanes over supported Ru catalysts. J. Mol. Catal. Chem., 2011, 351, 217-227.
[74]
Chang, C.D.C.N.Y.; Koenig, L.R.; Walsh, D.E. Synergism in acetic
acid/methanol reactions over ZSM-5 zeolites In 185: American Chemical
Society national meeting, Prepr. Pap. D.F.C.U.S., Ed.; Seattle, WA,
USA,. , 1983; Vol. 28., .
[75]
Wang, A.; Austin, D.; Karmakar, A.; Bernard, G.M.; Michaelis, V.K.; Yung, M.M.; Zeng, H.; Song, H. methane upgrading of acetic acid as a model compound for a biomass-derived liquid over a modified zeolite catalyst. ACS Catal., 2017, 7(5), 3681-3692.
[76]
Wang, S.; Guo, Z.; Cai, Q.; Guo, L. Catalytic conversion of carboxylic acids in bio-oil for liquid hydrocarbons production. Biomass Bioenergy, 2012, 45, 138-143.
[77]
Viswanadham, N.; Saxena, S.K. Enhanced performance of nano-crystalline ZSM-5 in acetone to gasoline (ATG) reaction. Fuel, 2013, 105, 490-495.
[78]
Cruz-Cabeza, A.J.; Esquivel, D.; Jimenez-Sanchidrian, C.; Romero-Salguero, F.J. Metal-exchanged beta zeolites as catalysts for the conversion of acetone to hydrocarbons. Materials (Basel), 2012, 5(1), 121-134.
[79]
Austin, D.; Wang, A.; Harrhy, J.H.; Mao, X.; Zeng, H.; Song, H. Catalytic aromatization of acetone as a model compound for biomass-derived oil under a methane environment. Catal. Sci. Technol., 2018, 8(19), 5104-5114.
[80]
Lohitharn, N.; Shanks, B.H. Upgrading of bio-oil: Effect of light aldehydes on acetic acid removal via esterification. Catal. Commun., 2009, 11(2), 96-99.
[81]
Joffres, B.; Laurenti, D.; Charon, N.; Daudin, A.; Quignard, A.; Geantet, C. Thermochemical conversion of lignin for fuels and chemicals: A Review. Oil
& Gas Science Technology - Revue d’IFP Energies nouvelles, 2013, 68(4), 753-763.
[82]
Azadi, P.; Inderwildi, O.R.; Farnood, R.; King, D.A. Liquid fuels, hydrogen and chemicals from lignin: A critical review. Renew. Sustain. Energy Rev., 2013, 21, 506-523.
[83]
Galadima, A.; Muraza, O. In situ fast pyrolysis of biomass with zeolite catalysts for bioaromatics/gasoline production: A review. Energy Convers. Manage., 2015, 105, 338-354.
[84]
Li, X.; Su, L.; Wang, Y.; Yu, Y.; Wang, C.; Li, X.; Wang, Z. Catalytic fast pyrolysis of Kraft lignin with HZSM-5 zeolite for producing aromatic hydrocarbons. Front. Environ. Sci. Eng., 2012, 6(3), 295-303.
[85]
Kim, J-Y.; Lee, J.H.; Park, J.; Kim, J.K.; An, D.; Song, I.K.; Choi, J.W. Catalytic pyrolysis of lignin over HZSM-5 catalysts: Effect of various parameters on the production of aromatic hydrocarbon. J. Anal. Appl. Pyrolysis, 2015, 114, 273-280.
[86]
Shen, D.; Zhao, J.; Xiao, R. Catalytic transformation of lignin to aromatic hydrocarbons over solid-acid catalyst: Effect of lignin sources and catalyst species. Energy Convers. Manage., 2016, 124, 61-72.
[87]
Das, A.; Rahimi, A.; Ulbrich, A.; Alherech, M.; Motagamwala, A.H.; Bhalla, A.; da Costa Sousa, L.; Balan, V.; Dumesic, J.A.; Hegg, E.L.; Dale, B.; Ralph, J.; Coon, J.J.; Stahl, S.S. Lignin Conversion to Low-Molecular-Weight Aromatics via an Aerobic Oxidation-Hydrolysis Sequence: Comparison of different Lignin Sources. ACS Sustain. Chem.& Eng., 2018, 6(3), 3367-3374.
[88]
Zhang, J.; Asakura, H.; Van Rijn, J.; Yang, J.; Duchesne, P.; Zhang, B.; Chen, X.; Zhang, P.; Saeys, M.; Yan, N. Highly efficient, NiAu-catalyzed hydrogenolysis of lignin into phenolic chemicals. Green Chem., 2014, 16(5), 2432-2437.
[89]
Laskar, D.D.; Tucker, M.P.; Chen, X.; Helms, G.L.; Yang, B. Noble-metal catalyzed hydrodeoxygenation of biomass-derived lignin to aromatic hydrocarbons. Green Chem., 2014, 16(2), 897.
[90]
Chen, P.; Zhang, Q.; Shu, R.; Xu, Y.; Ma, L.; Wang, T. Catalytic depolymerization of the hydrolyzed lignin over mesoporous catalysts. Bioresour. Technol., 2017, 226, 125-131.
[91]
Song, Q.; Wang, F.; Cai, J.; Wang, Y.; Zhang, J.; Yu, W.; Xu, J. Lignin depolymerization (LDP) in alcohol over nickel-based catalysts via a fragmentation–hydrogenolysis process. Energy Environ. Sci., 2013, 6(3), 994-1007.
[92]
Deuss, P.J.; Scott, M.; Tran, F.; Westwood, N.J.; de Vries, J.G.; Barta, K. Aromatic monomers by in situ conversion of reactive intermediates in the acid-catalyzed depolymerization of lignin. J. Am. Chem. Soc., 2015, 137(23), 7456-7467.
[93]
Rahimi, A.; Ulbrich, A.; Coon, J.J.; Stahl, S.S. Formic-acid-induced depolymerization of oxidized lignin to aromatics. Nature, 2014, 515(7526), 249-252.
[94]
Toledano, A.; Serrano, L.; Labidi, J. Improving base catalyzed lignin depolymerization by avoiding lignin repolymerization. Fuel, 2014, 116, 617-624.
[95]
Oregui Bengoechea, M.; Miletic, N.; Vogt, M.H.; Arias, P.L.; Barth, T. Analysis of the effect of temperature and reaction time on yields, compositions and oil quality in catalytic and non-catalytic lignin solvolysis in a formic acid/water media using experimental design. Bioresour. Technol., 2017, 234, 86-98.
[96]
Oregui-Bengoechea, M.; Gandarias, I.; Miletić, N.; Simonsen, S.F.; Kronstad, A.; Arias, P.L.; Barth, T. Thermocatalytic conversion of lignin in an ethanol/formic acid medium with NiMo catalysts: Role of the metal and acid sites. Appl. Catal. B, 2017, 217, 353-364.
[97]
Deepa, A.K.; Dhepe, P.L. Lignin Depolymerization into Aromatic Monomers over solid acid catalysts. ACS Catal., 2014, 5(1), 365-379.
[98]
Wang, A.; Song, H. Maximizing the production of aromatic hydrocarbons from lignin conversion by coupling methane activation. Bioresour. Technol., 2018, 268, 505-513.
[99]
Gu, G.H.; Mullen, C.A.; Boateng, A.A.; Vlachos, D.G. Mechanism of dehydration of phenols on noble metals via First-Principles Microkinetic Modeling. ACS Catal., 2016, 6(5), 3047-3055.
[100]
Mortensen, P.M.; Grunwaldt, J-D.; Jensen, P.A.; Jensen, A.D. Screening of catalysts for hydrodeoxygenation of phenol as a model compound for Bio-oil. ACS Catal., 2013, 3(8), 1774-1785.
[101]
Do, P.T.M.; Foster, A.J.; Chen, J.; Lobo, R.F. Bimetallic effects in the hydrodeoxygenation of meta-cresol on γ-Al2O3 supported Pt–Ni and Pt–Co catalysts. Green Chem., 2012, 14(5), 1388.
[102]
Tan, Q.; Wang, G.; Nie, L.; Dinse, A.; Buda, C.; Shabaker, J.; Resasco, D.E. Different product distributions and mechanistic aspects of the hydrodeoxygenation of m-cresol over platinum and ruthenium catalysts. ACS Catal., 2015, 5(11), 6271-6283.
[103]
Robinson, A.; Ferguson, G.A.; Gallagher, J.R.; Cheah, S.; Beckham, G.T.; Schaidle, J.A.; Hensley, J.E.; Medlin, J.W. Enhanced hydrodeoxygenation ofm-cresol over bimetallic Pt-Mo catalysts through an oxophilic metal-induced tautomerization pathway. ACS Catal., 2016, 6(7), 4356-4368.
[104]
Liu, G.; Robertson, A.W.; Li, M.M-J.; Kuo, W.C.H.; Darby, M.T.; Muhieddine, M.H.; Lin, Y-C.; Suenaga, K.; Stamatakis, M.; Warner, J.H.; Tsang, S.C.E. MoS2 monolayer catalyst doped with isolated Co atoms for the hydrodeoxygenation reaction. Nat. Chem., 2017, 9(8), 810.
[105]
Griffin, M.B.; Ferguson, G.A.; Ruddy, D.A.; Biddy, M.J.; Beckham, G.T.; Schaidle, J.A. Role of the support and reaction conditions on the vapor-phase deoxygenation ofm-Cresol over Pt/C and Pt/TiO2Catalysts. ACS Catal., 2016, 6(4), 2715-2727.
[106]
Hong, Y.; Zhang, H.; Sun, J.; Ayman, K.M.; Hensley, A.J.R.; Gu, M.; Engelhard, M.H.; McEwen, J-S.; Wang, Y. Synergistic catalysis between Pd and Fe in gas phase hydrodeoxygenation of m-Cresol. ACS Catal., 2014, 4(10), 3335-3345.
[107]
Prasomsri, T.; To, A.T.; Crossley, S.; Alvarez, W.E.; Resasco, D.E. Catalytic conversion of anisole over HY and HZSM-5 zeolites in the presence of different hydrocarbon mixtures., Appl. Catal. B, . 2011. 21,106(1-2), 204-11.
[108]
Peters, J.E.; Carpenter, J.R.; Dayton, D.C. Anisole and guaiacol hydrodeoxygenation reaction pathways over selected catalysts. Energy Fuels, 2015, 29(2), 909-916.
[109]
Xiao, Y.; Varma, A. Kinetics of guaiacol deoxygenation using methane over the Pt–Bi catalyst. React. Chem. Eng., 2017, 2(1), 36-43.
[110]
Gao, D.; Xiao, Y.; Varma, A. Guaiacol Hydrodeoxygenation over platinum catalyst: reaction pathways and kinetics., Ind. Eng. Chem. Res. 2015. 54 43),
10638-10644
[111]
Sajiki, H.; Mori, A.; Mizusaki, T.; Ikawa, T.; Maegawa, T.; Hirota, K. Pd/C-catalyzed deoxygenation of phenol derivatives using Mg metal and MeOH in the presence of NH4OAc. Org. Lett., 2006, 8(5), 987-990.
[112]
Choudhary, T.V.; Phillips, C.B. Renewable fuels via catalytic hydrodeoxygenation. Appl. Catal. A Gen., 2011, 397(1-2), 1-12.
[113]
Wang, X.; Rinaldi, R. A route for lignin and bio-oil conversion: Dehydroxylation of phenols into arenes by catalytic tandem reactions. Angew. Chem. Int. Ed. Engl., 2013, 52(44), 11499-11503.
[114]
Rogers, K.A.; Zheng, Y. Selective deoxygenation of biomass-derived bio-oils within hydrogen-modest environments: A review and new insights. ChemSusChem, 2016, 9(14), 1750-1772.
[115]
Si, Z.; Zhang, X.; Wang, C.; Ma, L.; Dong, R. An overview on catalytic hydrodeoxygenation of pyrolysis oil and its model compounds. Catal., 2017, 7(6), 169.
[116]
Xiao, Y.; Varma, A. Catalytic deoxygenation of guaiacol using methane. ACS Sustain. Chem.& Eng., 2015, 3(11), 2606-2610.
[117]
Wang, A.; Austin, D.; He, P.; Ha, M.; Michaelis, V.K.; Liu, L.; Qian, H.; Zeng, H.; Song, H. Mechanistic investigation on catalytic deoxygenation of phenol as a model compound of biocrude under methane. ACS Sustain. Chem.& Eng., 2018, 7(1), 1512-1523.
[118]
Zanuttini, M.S.; Dalla Costa, B.O.; Querini, C.A.; Peralta, M.A. Hydrodeoxygenation of m-cresol with Pt supported over mild acid materials. Appl. Catal. A Gen., 2014, 482, 352-361.
[119]
Liu, G.; Zhao, Y.; Guo, J. High selectively catalytic conversion of lignin-based phenols into para-/m-Xylene over Pt/HZSM-5. Catalysis, 2016, 6(2), 19.
[120]
Zhu, X.; Nie, L.; Lobban, L.L.; Mallinson, R.G.; Resasco, D.E. Efficient conversion of m-cresol to aromatics on a bifunctional Pt/HBeta Catalyst. Energy Fuels, 2014, 28(6), 4104-4111.
[121]
Zanuttini, M.S.; Lago, C.D.; Querini, C.A.; Peralta, M.A. Deoxygenation of m-cresol on Pt/γ-Al2O3 catalysts. Catal. Today, 2013, 213, 9-17.
[122]
Hensley, A.J.R.; Wang, Y.; McEwen, J-S. Phenol Deoxygenation Mechanisms on Fe(110) and Pd(111). ACS Catal., 2014, 5(2), 523-536.
[123]
Chen, H-Y.T.; Pacchioni, G. Role of oxide reducibility in the deoxygenation of phenol on ruthenium clusters supported on the anatase titania (101) Surface. ChemCatChem, 2016, 8(15), 2492-2499.
[124]
de Souza, P.M.; Rabelo-Neto, R.C.; Borges, L.E.P.; Jacobs, G.; Davis, B.H.; Resasco, D.E.; Noronha, F.B. Hydrodeoxygenation of Phenol over Pd Catalysts. Effect of support on reaction mechanism and catalyst deactivation. ACS Catal., 2017, 7(3), 2058-2073.
[125]
de Souza, P.M.; Nie, L.; Borges, L.E.P.; Noronha, F.B.; Resasco, D.E. Role of oxophilic supports in the selective hydrodeoxygenation of m-Cresol on Pd Catalysts. Catal. Lett., 2014, 144(12), 2005-2011.
[126]
Popov, A.; Kondratieva, E.; Mariey, L.; Goupil, J.M.; El Fallah, J.; Gilson, J-P.; Travert, A.; Maugé, F. Bio-oil hydrodeoxygenation: Adsorption of phenolic compounds on sulfided (Co)Mo catalysts. J. Catal., 2013, 297, 176-186.
[127]
Nie, L.; de Souza, P.M.; Noronha, F.B.; An, W.; Sooknoi, T.; Resasco, D.E. Selective conversion of m-cresol to toluene over bimetallic Ni–Fe catalysts. J. Mol. Catal. Chem., 2014, 388-389, 47-55.
[128]
Nie, L.; Resasco, D.E. Kinetics and mechanism of m-cresol hydrodeoxygenation on a Pt/SiO2 catalyst. J. Catal., 2014, 317, 22-29.
[129]
Shafaghat, H.; Sirous Rezaei, P.; Daud, W.M.A.W. Catalytic hydrogenation of phenol, cresol and guaiacol over physically mixed catalysts of Pd/C and zeolite solid acids. RSC Advances, 2015, 5(43), 33990-33998.
[130]
Xiao, S.; Liu, B.; Wang, Y.; Fang, Z.; Zhang, Z. Efficient conversion of cellulose into biofuel precursor 5-hydroxymethylfurfural in dimethyl sulfoxide-ionic liquid mixtures. Bioresour. Technol., 2014, 151, 361-366.
[131]
Wattanapaphawong, P.; Sato, O.; Sato, K.; Mimura, N.; Reubroycharoen, P.; Yamaguchi, A. Conversion of cellulose to lactic acid by using ZrO2-Al2O3 catalysts. Catalysts, 2017, 7(7), 221.
[132]
Onda, A.; Ochi, T.; Yanagisawa, K. Selective hydrolysis of cellulose into glucose over solid acid catalysts. Green Chem., 2008, 10(10), 1033-1037.
[133]
Suganuma, S.; Nakajima, K.; Kitano, M.; Yamaguchi, D.; Kato, H.; Hayashi, S.; Hara, M. Hydrolysis of cellulose by amorphous carbon bearing SO3H, COOH, and OH Groups. J. Am. Chem. Soc., 2008, 130(38), 12787-12793.
[134]
Zhou, L.; Liang, R.; Ma, Z.; Wu, T.; Wu, Y. Conversion of cellulose to HMF in ionic liquid catalyzed by bifunctional ionic liquids. Bioresour. Technol., 2013, 129, 450-455.
[135]
Wu, Y.; Fu, Z.; Yin, D.; Xu, Q.; Liu, F.; Lu, C.; Mao, L. Microwave-assisted hydrolysis of crystalline cellulose catalyzed by biomass char sulfonic acids. Green Chem., 2010, 12(4), 696-700.
[136]
Zhang, G.; Ni, C.; Huang, X.; Welgamage, A.; Lawton, L.A.; Robertson, P.K.; Irvine, J.T. Simultaneous cellulose conversion and hydrogen production assisted by cellulose decomposition under UV-light photocatalysis. Chem. Commun. (Camb), 2016, 52(8), 1673-1676.
[137]
Carlson, T.R.; Jae, J.; Lin, Y-C.; Tompsett, G.A.; Huber, G.W. Catalytic fast pyrolysis of glucose with HZSM-5: The combined homogeneous and heterogeneous reactions. J. Catal., 2010, 270(1), 110-124.
[138]
Chen, K.; Tamura, M.; Yuan, Z.; Nakagawa, Y.; Tomishige, K. One-Pot conversion of sugar and sugar polyols to n-Alkanes without C-C dissociation over the Ir-ReOx/SiO2 catalyst combined with H-ZSM-5. ChemSusChem, 2013, 6, 613-621.
[139]
Gunawardena, D.A.; Fernando, S.D. Thermal conversion of glucose to aromatic hydrocarbons via pressurized secondary pyrolysis. Bioresour. Technol., 2011, 102(21), 10089-10093.
[140]
Gunawardena, D.A.; Sandun, D.; Fernando, S.D. Catalytic conversion of glucose micropyrolysis vapors in methane-using isotope labeling to reveal reaction pathways. Energy Technol. , 2017, 5, 1-8.
[141]
Carlson, T.R.; Jae, J.; Huber, G.W. Mechanistic insights from isotopic studies of glucose conversion to aromatics over ZSM-5. ChemCatChem, 2009, 1(1), 107-110.
[142]
Zheng, A.; Zhao, Z.; Chang, S.; Huang, Z.; Zhao, K.; Wu, H.; Wang, X.; He, F.; Li, H. Maximum synergistic effect in the coupling conversion of bio-derived furans and methanol over ZSM-5 for enhancing aromatic production. Green Chem., 2014, 16(5), 2580-2586.
[143]
Li, X.; Jia, P.; Wang, T. Furfural: A promising platform compound for sustainable production of C4 and C5 chemicals. ACS Catal., 2016, 6(11), 7621-7640.
[144]
Xu, W.; Wang, H.; Liu, X.; Ren, J.; Wang, Y.; Lu, G. Direct catalytic conversion of furfural to 1,5-pentanediol by hydrogenolysis of the furan ring under mild conditions over Pt/CO2AlO4 catalyst. Chem. Commun. , 2011, 47, 3924-3926.
[145]
Yang, Y.; Du, Z.; Huang, Y.; Lu, F.; Wang, F.; Gao, J.; Xu, J. Conversion of furfural into cyclopentanone over Ni-Cu bimetallic catalysts. Green Chem., 2013, 15, 1932-1940.
[146]
Sitthisa, S.; An, W.; Resasco, D.E. Selective conversion of furfural to methylfuran over silica-supported NiFe bimetallic catalysts. J. Catal., 2011, 284(1), 90-101.
[147]
Cheng, Y.T.; Huber, G.W. Chemistry of furan conversion into aromatics and olefins over HZSM-5: A model biomass conversion reaction. ACS Catal., 2011, 1, 611-628.
[148]
Cheng, Y-T.; Huber, G.W. Production of targeted aromatics by using diels-alder classes of reactions with furans and olefins over ZSM-5. Green Chem., 2012, 14(11), 3114-3125.
[149]
Williams, C.L.; Chang, C.C.; Do, P.; Nikbin, N.; Caratzoulas, S. Cycloaddition of Biomass-derived furans for catalytic production of renewable p-xylene. ACS Catal., 2012, 2, 935-939.