Generic placeholder image

Medicinal Chemistry

Editor-in-Chief

ISSN (Print): 1573-4064
ISSN (Online): 1875-6638

Review Article

Recent Advances in Therapeutic Applications of Bisbenzimidazoles

Author(s): Smita Verma , Vishnuvardh Ravichandiran, Nihar Ranjan and Swaran J.S. Flora*

Volume 16, Issue 4, 2020

Page: [454 - 486] Pages: 33

DOI: 10.2174/1573406415666190416120801

Price: $65

Abstract

Nitrogen-containing heterocycles are one of the most common structural motifs in approximately 80% of the marketed drugs. Of these, benzimidazoles analogues are known to elicit a wide spectrum of pharmaceutical activities such as anticancer, antibacterial, antiparasitic, antiviral, antifungal as well as chemosensor effect. Based on the benzimidazole core fused heterocyclic compounds, crescent-shaped bisbenzimidazoles were developed which provided an early breakthrough in the sequence-specific DNA recognition. Over the years, a number of functional variations in the bisbenzimidazole core have led to the emergence of their unique properties and established them as versatile ligands against several classes of pathogens. The present review provides an overview of diverse pharmacological activities of the bisbenzimidazole analogues in the past decade with a brief account of its development through the years.

Keywords: Bisbenzimidazole, hoechst 33258, hoechst 33342, DNA binders, anticancer compounds, antibacterial compounds.

Graphical Abstract

[1]
Roth, T.; Morningstar, M.L.; Boyer, P.L.; Hughes, S.H.; Buckheit, R.W., Jr; Michejda, C.J. Synthesis and biological activity of novel nonnucleoside inhibitors of HIV-1 reverse transcriptase. 2-Aryl-substituted benzimidazoles. J. Med. Chem., 1997, 40(26), 4199-4207.
[http://dx.doi.org/10.1021/jm970096g] [PMID: 9435891]
[2]
Anand, K.; Wakode, S. Development of drugs based on Benzimidazole Heterocycle: Recent advancement and insights. Int. J. Chem. Stud., 2017, 5, 350-362.
[3]
Bansal, S.; Sinha, D.; Singh, M.; Cheng, B.; Tse-Dinh, Y.C.; Tandon, V. 3,4-dimethoxyphenyl bis-benzimidazole, a novel DNA topoisomerase inhibitor that preferentially targets Escherichia coli topoisomerase I. J. Antimicrob. Chemother., 2012, 67(12), 2882-2891.
[http://dx.doi.org/10.1093/jac/dks322] [PMID: 22945915]
[4]
Ranjan, N.; Fulcrand, G.; King, A.; Brown, J.; Jiang, X.; Leng, F.; Arya, D.P. Selective inhibition of bacterial topoisomerase I by alkynyl-bisbenzimidazoles. MedChemComm, 2014, 5(6), 816-825.
[http://dx.doi.org/10.1039/C4MD00140K] [PMID: 25083189]
[5]
Maiti, S.; Chaudhury, N.K.; Chowdhury, S. Hoechst 33258 binds to G-quadruplex in the promoter region of human c-myc. Biochem. Biophys. Res. Commun., 2003, 310(2), 505-512.
[http://dx.doi.org/10.1016/j.bbrc.2003.09.052] [PMID: 14521939]
[6]
Li, G.; Huang, J.; Zhang, M.; Zhou, Y.; Zhang, D.; Wu, Z.; Wang, S.; Weng, X.; Zhou, X.; Yang, G. Bis(benzimidazole)pyridine derivative as a new class of G-quadruplex inducing and stabilizing ligand. Chem. Commun. (Camb.), 2008, 38(38), 4564-4566.
[http://dx.doi.org/10.1039/b807916a] [PMID: 18815684]
[7]
Bhattacharya, S.; Chaudhuri, P.; Jain, A.K.; Paul, A. Symmetrical bisbenzimidazoles with benzenediyl spacer: the role of the shape of the ligand on the stabilization and structural alterations in telomeric G-quadruplex DNA and telomerase inhibition. Bioconjug. Chem., 2010, 21(7), 1148-1159.
[http://dx.doi.org/10.1021/bc9003298] [PMID: 20536245]
[8]
Ji, Y.H.; Bur, D.; Häsler, W.; Runtz Schmitt, V.; Dorn, A.; Bailly, C.; Waring, M.J.; Hochstrasser, R.; Leupin, W. Tris-benzimidazole derivatives: design, synthesis and DNA sequence recognition. Bioorg. Med. Chem., 2001, 9(11), 2905-2919.
[http://dx.doi.org/10.1016/S0968-0896(01)00170-5] [PMID: 11597472]
[9]
Joubert, A.; Sun, X.W.; Johansson, E.; Bailly, C.; Mann, J.; Neidle, S. Sequence-selective targeting of long stretches of the DNA minor groove by a novel dimeric bis-benzimidazole. Biochemistry, 2003, 42(20), 5984-5992.
[http://dx.doi.org/10.1021/bi026926w] [PMID: 12755600]
[10]
Baraldi, P.G.; Bovero, A.; Fruttarolo, F.; Preti, D.; Tabrizi, M.A.; Pavani, M.G.; Romagnoli, R. DNA minor groove binders as potential antitumor and antimicrobial agents. Med. Res. Rev., 2004, 24(4), 475-528.
[http://dx.doi.org/10.1002/med.20000] [PMID: 15170593]
[11]
Hilwig, I.; Gropp, A. Staining of constitutive heterochromatin in mammalian chromosomes with a new fluorochrome. Exp. Cell Res., 1972, 75(1), 122-126.
[http://dx.doi.org/10.1016/0014-4827(72)90527-7] [PMID: 4117919]
[12]
Latt, S.A.; Stetten, G.; Juergens, L.A.; Willard, H.F.; Scher, C.D. Recent developments in the detection of deoxyribonucleic acid synthesis by 33258 Hoechst fluorescence. J. Histochem. Cytochem., 1975, 23(7), 493-505.
[http://dx.doi.org/10.1177/23.7.1095650] [PMID: 1095650]
[13]
Latt, S.A. Microfluorometric detection of deoxyribonucleic acid replication in human metaphase chromosomes. Proc. Natl. Acad. Sci. USA, 1973, 70(12), 3395-3399.
[http://dx.doi.org/10.1073/pnas.70.12.3395] [PMID: 4128545]
[14]
Raposa, T.; Natarajan, A.T. Fluorescence banding pattern of human and mouse chromosomes with a benzimidazol derivative (Hoechst 33258). Humangenetik, 1974, 21(3), 221-226.
[PMID: 4136266]
[15]
Weisblum, B.; Haenssler, E. Fluorometric properties of the bibenzimidazole derivative Hoechst 33258, a fluorescent probe specific for AT concentration in chromosomal DNA. Chromosoma, 1974, 46(3), 255-260.
[http://dx.doi.org/10.1007/BF00284881] [PMID: 4136742]
[16]
Harshman, K.D.; Dervan, P.B. Molecular recognition of B-DNA by Hoechst 33258. Nucleic Acids Res., 1985, 13(13), 4825-4835.
[http://dx.doi.org/10.1093/nar/13.13.4825] [PMID: 2410856]
[17]
Pjura, P.E.; Grzeskowiak, K.; Dickerson, R.E. Binding of Hoechst 33258 to the minor groove of B-DNA. J. Mol. Biol., 1987, 197(2), 257-271.
[http://dx.doi.org/10.1016/0022-2836(87)90123-9] [PMID: 2445998]
[18]
Parkinson, J.A.; Barber, J.; Douglas, K.T.; Rosamond, J.; Sharples, D. Minor-groove recognition of the self-complementary duplex d(CGCGAATTCGCG)2 by Hoechst 33258: a high-field NMR study. Biochemistry, 1990, 29(44), 10181-10190.
[http://dx.doi.org/10.1021/bi00496a005] [PMID: 1703003]
[19]
Searle, M.S.; Embrey, K.J. Sequence-specific interaction of Hoechst 33258 with the minor groove of an adenine-tract DNA duplex studied in solution by 1H NMR spectroscopy. Nucleic Acids Res., 1990, 18(13), 3753-3762.
[http://dx.doi.org/10.1093/nar/18.13.3753] [PMID: 1695730]
[20]
Zimmer, C.; Wähnert, U. Nonintercalating DNA-binding ligands: specificity of the interaction and their use as tools in biophysical, biochemical and biological investigations of the genetic material. Prog. Biophys. Mol. Biol., 1986, 47(1), 31-112.
[http://dx.doi.org/10.1016/0079-6107(86)90005-2] [PMID: 2422697]
[21]
Liu, L.F. DNA topoisomerase poisons as antitumor drugs. Annu. Rev. Biochem., 1989, 58, 351-375.
[http://dx.doi.org/10.1146/annurev.bi.58.070189.002031] [PMID: 2549853]
[22]
Beerman, T.A.; McHugh, M.M.; Sigmund, R.; Lown, J.W.; Rao, K.E.; Bathini, Y. Effects of analogs of the DNA minor groove binder Hoechst 33258 on topoisomerase II and I mediated activities. Biochim. Biophys. Acta, 1992, 1131(1), 53-61.
[http://dx.doi.org/10.1016/0167-4781(92)90098-K] [PMID: 1374646]
[23]
Woynarowski, J.M.; McHugh, M.; Sigmund, R.D.; Beerman, T.A. Modulation of topoisomerase II catalytic activity by DNA minor groove binding agents distamycin, Hoechst 33258, and 4′,6-diamidine-2-phenylindole. Mol. Pharmacol., 1989, 35(2), 177-182.
[PMID: 2465485]
[24]
Singh, M.P.; Joseph, T.; Kumar, S.; Bathini, Y.; Lown, J.W. Synthesis and sequence-specific DNA binding of a topoisomerase inhibitory analog of Hoechst 33258 designed for altered base and sequence recognition. Chem. Res. Toxicol., 1992, 5(5), 597-607.
[http://dx.doi.org/10.1021/tx00029a003] [PMID: 1280170]
[25]
Loontiens, F.G.; Regenfuss, P.; Zechel, A.; Dumortier, L.; Clegg, R.M. Binding characteristics of Hoechst 33258 with calf thymus DNA, poly[d(A-T)], and d(CCGGAATTCCGG): multiple stoichiometries and determination of tight binding with a wide spectrum of site affinities. Biochemistry, 1990, 29(38), 9029-9039.
[http://dx.doi.org/10.1021/bi00490a021] [PMID: 1702995]
[26]
Adnet, F.; Liquier, J.; Taillandier, E.; Singh, M.P.; Rao, K.E.; Lown, J.W. FTIR study of specific binding interactions between DNA minor groove binding ligands and polynucleotides. J. Biomol. Struct. Dyn., 1992, 10(3), 565-575.
[http://dx.doi.org/10.1080/07391102.1992.10508668] [PMID: 1283517]
[27]
Bailly, C.; Colson, P.; Hénichart, J.P.; Houssier, C. The different binding modes of Hoechst 33258 to DNA studied by electric linear dichroism. Nucleic Acids Res., 1993, 21(16), 3705-3709.
[http://dx.doi.org/10.1093/nar/21.16.3705] [PMID: 7690125]
[28]
Loontiens, F.G.; McLaughlin, L.W.; Diekmann, S.; Clegg, R.M. Binding of Hoechst 33258 and 4′,6′-diamidino-2-phenylindole to self-complementary decadeoxynucleotides with modified exocyclic base substituents. Biochemistry, 1991, 30(1), 182-189.
[http://dx.doi.org/10.1021/bi00215a027] [PMID: 1703013]
[29]
Hashimoto, K.; Ito, K.; Ishimori, Y. Sequence-specific gene detection with a gold electrode modified with DNA probes and an electrochemically active dye. Anal. Chem., 1994, 66(21), 3830-3833.
[http://dx.doi.org/10.1021/ac00093a045] [PMID: 7528479]
[30]
Haq, I.; Ladbury, J.E.; Chowdhry, B.Z.; Jenkins, T.C.; Chaires, J.B. Specific binding of hoechst 33258 to the d(CGCAAATTTGCG)2 duplex: calorimetric and spectroscopic studies. J. Mol. Biol., 1997, 271(2), 244-257.
[http://dx.doi.org/10.1006/jmbi.1997.1170] [PMID: 9268656]
[31]
Walsh, C. Where will new antibiotics come from? Nat. Rev. Microbiol., 2003, 1(1), 65-70.
[http://dx.doi.org/10.1038/nrmicro727] [PMID: 15040181]
[32]
Hasler, W.; Ji, Y.; Leupin, W. Antibacterial dibenzimidazole derivatives US5824698, 1998, . 106
[33]
Güven, Ö.Ö.; Erdoğan, T.; Göker, H.; Yildiz, S. Synthesis and antimicrobial activity of some novel phenyl and benzimidazole substituted benzyl ethers. Bioorg. Med. Chem. Lett., 2007, 17(8), 2233-2236.
[http://dx.doi.org/10.1016/j.bmcl.2007.01.061] [PMID: 17289382]
[34]
Torres-Gómez, H.; Hernández-Núñez, E.; León-Rivera, I.; Guerrero-Alvarez, J.; Cedillo-Rivera, R.; Moo-Puc, R.; Argotte-Ramos, R.; Rodríguez-Gutiérrez, Mdel.C.; Chan-Bacab, M.J.; Navarrete-Vázquez, G. Design, synthesis and in vitro antiprotozoal activity of benzimidazole-pentamidine hybrids. Bioorg. Med. Chem. Lett., 2008, 18(11), 3147-3151.
[http://dx.doi.org/10.1016/j.bmcl.2008.05.009] [PMID: 18486471]
[35]
Ansari, K.F.; Lal, C. Synthesis, physicochemical properties and antimicrobial activity of some new benzimidazole derivatives. Eur. J. Med. Chem., 2009, 44(10), 4028-4033.
[http://dx.doi.org/10.1016/j.ejmech.2009.04.037] [PMID: 19482384]
[36]
Shingalapur, R.V.; Hosamani, K.M.; Keri, R.S. Synthesis and evaluation of in vitro anti-microbial and anti-tubercular activity of 2-styryl benzimidazoles. Eur. J. Med. Chem., 2009, 44(10), 4244-4248.
[http://dx.doi.org/10.1016/j.ejmech.2009.05.021] [PMID: 19540630]
[37]
Özkay, Y.; Tunali, Y.; Karaca, H.; Işikdağ, I. Antimicrobial activity and a SAR study of some novel benzimidazole derivatives bearing hydrazone moiety. Eur. J. Med. Chem., 2010, 45(8), 3293-3298.
[http://dx.doi.org/10.1016/j.ejmech.2010.04.012] [PMID: 20451306]
[38]
Roderick, W.R.; Nordeen, C.W., Jr; Von Esch, A.M.; Appell, R.N. Bisbenzimidazoles. Potent inhibitors of rhinoviruses. J. Med. Chem., 1972, 15(6), 655-658.
[http://dx.doi.org/10.1021/jm00276a023] [PMID: 4337902]
[39]
Walsh, C.T.; Wencewicz, T.A. Prospects for new antibiotics: a molecule-centered perspective. J. Antibiot. (Tokyo), 2014, 67(1), 7-22.
[http://dx.doi.org/10.1038/ja.2013.49] [PMID: 23756684]
[40]
Maxwell, A. DNA gyrase as a drug target. Biochem. Soc. Trans., 1999, 27(2), 48-53.
[http://dx.doi.org/10.1042/bst0270048] [PMID: 10093705]
[41]
Giles, G.I.; Sharma, R.P. Topoisomerase enzymes as therapeutic targets for cancer chemotherapy. Med. Chem., 2005, 1(4), 383-394.
[http://dx.doi.org/10.2174/1573406054368738] [PMID: 16789895]
[42]
Pommier, Y. Topoisomerase I inhibitors: camptothecins and beyond. Nat. Rev. Cancer, 2006, 6(10), 789-802.
[http://dx.doi.org/10.1038/nrc1977] [PMID: 16990856]
[43]
Mitscher, L.A. Bacterial topoisomerase inhibitors: quinolone and pyridone antibacterial agents. Chem. Rev., 2005, 105(2), 559-592.
[http://dx.doi.org/10.1021/cr030101q] [PMID: 15700957]
[44]
Pommier, Y. Drugging topoisomerases: lessons and challenges. ACS Chem. Biol., 2013, 8(1), 82-95.
[http://dx.doi.org/10.1021/cb300648v] [PMID: 23259582]
[45]
Tse-Dinh, Y.C. Bacterial topoisomerase I as a target for discovery of antibacterial compounds. Nucleic Acids Res., 2009, 37(3), 731-737.
[http://dx.doi.org/10.1093/nar/gkn936] [PMID: 19042977]
[46]
Tse-Dinh, Y.C. Targeting bacterial topoisomerase I to meet the challenge of finding new antibiotics. Future Med. Chem., 2015, 7(4), 459-471.
[http://dx.doi.org/10.4155/fmc.14.157] [PMID: 25875873]
[47]
Zhang, Z.; Cheng, B.; Tse-Dinh, Y.C. Crystal structure of a covalent intermediate in DNA cleavage and rejoining by Escherichia coli DNA topoisomerase I. Proc. Natl. Acad. Sci. USA, 2011, 108(17), 6939-6944.
[http://dx.doi.org/10.1073/pnas.1100300108] [PMID: 21482796]
[48]
Perry, K.; Mondragón, A. Structure of a complex between E. coli DNA topoisomerase I and single-stranded DNA. Structure, 2003, 11(11), 1349-1358.
[http://dx.doi.org/10.1016/j.str.2003.09.013] [PMID: 14604525]
[49]
Changela, A.; DiGate, R.J.; Mondragón, A. Structural studies of E. coli topoisomerase III-DNA complexes reveal a novel type IA topoisomerase-DNA conformational intermediate. J. Mol. Biol., 2007, 368(1), 105-118.
[http://dx.doi.org/10.1016/j.jmb.2007.01.065] [PMID: 17331537]
[50]
Forterre, P.; Gadelle, D. Phylogenomics of DNA topoisomerases: their origin and putative roles in the emergence of modern organisms. Nucleic Acids Res., 2009, 37(3), 679-692.
[http://dx.doi.org/10.1093/nar/gkp032] [PMID: 19208647]
[51]
Cheng, B.; Liu, I.F.; Tse-Dinh, Y.C. Compounds with antibacterial activity that enhance DNA cleavage by bacterial DNA topoisomerase I. J. Antimicrob. Chemother., 2007, 59(4), 640-645.
[http://dx.doi.org/10.1093/jac/dkl556] [PMID: 17317696]
[52]
Nitiss, J.L. DNA topoisomerases in cancer chemotherapy: using enzymes to generate selective DNA damage. Curr. Opin. Investig. Drugs, 2002, 3(10), 1512-1516.
[PMID: 12431029]
[53]
Tawar, U.; Jain, A.K.; Chandra, R.; Singh, Y.; Dwarakanath, B.S.; Chaudhury, N.K.; Good, L.; Tandon, V. Minor groove binding DNA ligands with expanded A/T sequence length recognition, selective binding to bent DNA regions and enhanced fluorescent properties. Biochemistry, 2003, 42(45), 13339-13346.
[http://dx.doi.org/10.1021/bi034425k] [PMID: 14609344]
[54]
Chen, A.Y.; Yu, C.; Bodley, A.; Peng, L.F.; Liu, L.F. A new mammalian DNA topoisomerase I poison Hoechst 33342: cytotoxicity and drug resistance in human cell cultures. Cancer Res., 1993, 53(6), 1332-1337.
[PMID: 8383008]
[55]
Bansal, S.; Tawar, U.; Singh, M.; Nikravesh, A.; Good, L.; Tandon, V. Old class but new dimethoxy analogue of benzimidazole: a bacterial topoisomerase I inhibitor. Int. J. Antimicrob. Agents, 2010, 35(2), 186-190.
[http://dx.doi.org/10.1016/j.ijantimicag.2009.07.018] [PMID: 20006473]
[56]
Singh, M.; Tandon, V. Synthesis and biological activity of novel inhibitors of topoisomerase I: 2-aryl-substituted 2-bis-1H-benzimidazoles. Eur. J. Med. Chem., 2011, 46(2), 659-669.
[http://dx.doi.org/10.1016/j.ejmech.2010.11.046] [PMID: 21186067]
[57]
Nimesh, H.; Sur, S.; Sinha, D.; Yadav, P.; Anand, P.; Bajaj, P.; Virdi, J.S.; Tandon, V. Synthesis and biological evaluation of novel bisbenzimidazoles as Escherichia coli topoisomerase IA inhibitors and potential antibacterial agents. J. Med. Chem., 2014, 57(12), 5238-5257.
[http://dx.doi.org/10.1021/jm5003028] [PMID: 24856410]
[58]
Sinha, D.; Pandey, S.; Singh, R.; Tiwari, V.; Sad, K.; Tandon, V. Synergistic efficacy of Bisbenzimidazole and Carbonyl Cyanide 3-Chlorophenylhydrazone combination against MDR bacterial strains. Sci. Rep., 2017, 7, 44419.
[http://dx.doi.org/10.1038/srep44419] [PMID: 28303897]
[59]
Ranjan, N.; Story, S.; Fulcrand, G.; Leng, F.; Ahmad, M.; King, A.; Sur, S.; Wang, W.; Tse-Dinh, Y.C.; Arya, D.P. Selective Inhibition of Escherichia coli RNA and DNA Topoisomerase I by Hoechst 33258 Derived Mono- and Bisbenzimidazoles. J. Med. Chem., 2017, 60(12), 4904-4922.
[http://dx.doi.org/10.1021/acs.jmedchem.7b00191] [PMID: 28513176]
[60]
Weidner-Wells, M.A.; Ohemeng, K.A.; Nguyen, V.N.; Fraga-Spano, S.; Macielag, M.J.; Werblood, H.M.; Foleno, B.D.; Webb, G.C.; Barrett, J.F.; Hlasta, D.J. Amidino benzimidazole inhibitors of bacterial two-component systems. Bioorg. Med. Chem. Lett., 2001, 11(12), 1545-1548.
[http://dx.doi.org/10.1016/S0960-894X(01)00024-5] [PMID: 11412977]
[61]
He, Y.; Wu, B.; Yang, J.; Robinson, D.; Risen, L.; Ranken, R.; Blyn, L.; Sheng, S.; Swayze, E.E. 2-piperidin-4-yl-benzimidazoles with broad spectrum antibacterial activities. Bioorg. Med. Chem. Lett., 2003, 13(19), 3253-3256.
[http://dx.doi.org/10.1016/S0960-894X(03)00661-9] [PMID: 12951103]
[62]
He, Y.; Yang, J.; Wu, B.; Risen, L.; Swayze, E.E. Synthesis and biological evaluations of novel benzimidazoles as potential antibacterial agents. Bioorg. Med. Chem. Lett., 2004, 14(5), 1217-1220.
[http://dx.doi.org/10.1016/j.bmcl.2003.12.051] [PMID: 14980669]
[63]
Karataş, H.; Alp, M.; Yildiz, S.; Göker, H. Synthesis and potent in vitro activity of novel 1H-benzimidazoles as anti-MRSA agents. Chem. Biol. Drug Des., 2012, 80(2), 237-244.
[http://dx.doi.org/10.1111/j.1747-0285.2012.01393.x] [PMID: 22497759]
[64]
Del Poeta, M.; Schell, W.A.; Dykstra, C.C.; Jones, S.; Tidwell, R.R.; Czarny, A.; Bajic, M.; Kumar, A.; Boykin, D.; Perfect, J.R. Structure-in vitro activity relationships of pentamidine analogues and dication-substituted bis-benzimidazoles as new antifungal agents. Antimicrob. Agents Chemother., 1998, 42(10), 2495-2502.
[http://dx.doi.org/10.1128/AAC.42.10.2495] [PMID: 9756747]
[65]
Givens, M.D.; Dykstra, C.C.; Brock, K.V.; Stringfellow, D.A.; Kumar, A.; Stephens, C.E.; Goker, H.; Boykin, D.W. Detection of inhibition of bovine viral diarrhea virus by aromatic cationic molecules. Antimicrob. Agents Chemother., 2003, 47(7), 2223-2230.
[http://dx.doi.org/10.1128/AAC.47.7.2223-2230.2003] [PMID: 12821472]
[66]
Ismail, M.A.; Batista-Parra, A.; Miao, Y.; Wilson, W.D.; Wenzler, T.; Brun, R.; Boykin, D.W. Dicationic near-linear biphenyl benzimidazole derivatives as DNA-targeted antiprotozoal agents. Bioorg. Med. Chem., 2005, 13(24), 6718-6726.
[http://dx.doi.org/10.1016/j.bmc.2005.07.024] [PMID: 16099661]
[67]
Ismail, M.A.; Brun, R.; Wenzler, T.; Tanious, F.A.; Wilson, W.D.; Boykin, D.W. Dicationic biphenyl benzimidazole derivatives as antiprotozoal agents. Bioorg. Med. Chem., 2004, 12(20), 5405-5413.
[http://dx.doi.org/10.1016/j.bmc.2004.07.056] [PMID: 15388167]
[68]
Hu, L.; Kully, M.L.; Boykin, D.W.; Abood, N. Synthesis and structure-activity relationship of dicationic diaryl ethers as novel potent anti-MRSA and anti-VRE agents. Bioorg. Med. Chem. Lett., 2009, 19(16), 4626-4629.
[http://dx.doi.org/10.1016/j.bmcl.2009.06.077] [PMID: 19589676]
[69]
Hu, L.; Kully, M.L.; Boykin, D.W.; Abood, N. Optimization of the central linker of dicationic bis-benzimidazole anti-MRSA and anti-VRE agents. Bioorg. Med. Chem. Lett., 2009, 19(13), 3374-3377.
[http://dx.doi.org/10.1016/j.bmcl.2009.05.061] [PMID: 19481935]
[70]
Küçükbay, H.; Yilmaz, Ü.; Şireci, N.; Güvenç, A.N. Synthesis and antimicrobial activities of some bridged bis-benzimidazole derivatives. Turk. J. Chem., 2011, 35, 561-571.
[71]
Moreira, J.B.; Mann, J.; Neidle, S.; McHugh, T.D.; Taylor, P.W. Antibacterial activity of head-to-head bis-benzimidazoles. Int. J. Antimicrob. Agents, 2013, 42(4), 361-366.
[http://dx.doi.org/10.1016/j.ijantimicag.2013.04.033] [PMID: 23837928]
[72]
Redayan, M.A.; Ali, W.B.; Mohammed, A.M. Synthesis, Characterization and Antibacterial Evaluation of some Novel Benzimidazole Derivatives Containing 1, 3, 4-thiadiazole moiety. Orient. J. Chem., 2017, 33, 3138-3143.
[http://dx.doi.org/10.13005/ojc/330656]
[73]
Enoch, D.A.; Ludlam, H.A.; Brown, N.M. Invasive fungal infections: a review of epidemiology and management options. J. Med. Microbiol., 2006, 55(Pt 7), 809-818.
[http://dx.doi.org/10.1099/jmm.0.46548-0] [PMID: 16772406]
[74]
Chandrika, N.T.; Shrestha, S.K.; Ngo, H.X.; Garneau-Tsodikova, S. Synthesis and investigation of novel benzimidazole derivatives as antifungal agents. Bioorg. Med. Chem., 2016, 24(16), 3680-3686.
[http://dx.doi.org/10.1016/j.bmc.2016.06.010] [PMID: 27301676]
[75]
Shrestha, S.K.; Fosso, M.Y.; Green, K.D.; Garneau-Tsodikova, S. Amphiphilic Tobramycin Analogues as Antibacterial and Antifungal Agents. Antimicrob. Agents Chemother., 2015, 59(8), 4861-4869.
[http://dx.doi.org/10.1128/AAC.00229-15] [PMID: 26033722]
[76]
Fosso, M.; AlFindee, M.N.; Zhang, Q.; Nziko, Vde.P.; Kawasaki, Y.; Shrestha, S.K.; Bearss, J.; Gregory, R.; Takemoto, J.Y.; Chang, C.W. Structure-activity relationships for antibacterial to antifungal conversion of kanamycin to amphiphilic analogues. J. Org. Chem., 2015, 80(9), 4398-4411.
[http://dx.doi.org/10.1021/acs.joc.5b00248] [PMID: 25826012]
[77]
Nahar, S.; Ranjan, N.; Ray, A.; Arya, D.P.; Maiti, S. Potent inhibition of miR-27a by neomycin-bisbenzimidazole conjugates. Chem. Sci. (Camb.), 2015, 6(10), 5837-5846.
[http://dx.doi.org/10.1039/C5SC01969A] [PMID: 29861909]
[78]
Thamban Chandrika, N.; Shrestha, S.K.; Ranjan, N.; Sharma, A.; Arya, D.P.; Garneau-Tsodikova, S. New application of Neomycin B–Bisbenzimidazole hybrids as antifungal agents. ACS Infect. Dis., 2018, 4(2), 196-207.
[http://dx.doi.org/10.1021/acsinfecdis.7b00254] [PMID: 29227087]
[79]
Momenimovahed, Z.; Tiznobaik, A.; Taheri, S.; Salehiniya, H. Ovarian cancer in the world: epidemiology and risk factors. Int. J. Womens Health, 2019, 11, 287-299.
[http://dx.doi.org/10.2147/IJWH.S197604] [PMID: 31118829]
[80]
Yates, L.R.; Campbell, P.J. Evolution of the cancer genome. Nat. Rev. Genet., 2012, 13(11), 795-806.
[http://dx.doi.org/10.1038/nrg3317] [PMID: 23044827]
[81]
Donawho, C.K.; Luo, Y.; Luo, Y.; Penning, T.D.; Bauch, J.L.; Bouska, J.J.; Bontcheva-Diaz, V.D.; Cox, B.F.; DeWeese, T.L.; Dillehay, L.E.; Ferguson, D.C.; Ghoreishi-Haack, N.S.; Grimm, D.R.; Guan, R.; Han, E.K.; Holley-Shanks, R.R.; Hristov, B.; Idler, K.B.; Jarvis, K.; Johnson, E.F.; Kleinberg, L.R.; Klinghofer, V.; Lasko, L.M.; Liu, X.; Marsh, K.C.; McGonigal, T.P.; Meulbroek, J.A.; Olson, A.M.; Palma, J.P.; Rodriguez, L.E.; Shi, Y.; Stavropoulos, J.A.; Tsurutani, A.C.; Zhu, G.D.; Rosenberg, S.H.; Giranda, V.L.; Frost, D.J. ABT-888, an orally active poly(ADP-ribose) polymerase inhibitor that potentiates DNA-damaging agents in preclinical tumor models. Clin. Cancer Res., 2007, 13(9), 2728-2737.
[http://dx.doi.org/10.1158/1078-0432.CCR-06-3039] [PMID: 17473206]
[82]
Laryea, D.; Gullbo, J.; Isaksson, A.; Larsson, R.; Nygren, P. Characterization of the cytotoxic properties of the benzimidazole fungicides, benomyl and carbendazim, in human tumour cell lines and primary cultures of patient tumour cells. Anticancer Drugs, 2010, 21(1), 33-42.
[http://dx.doi.org/10.1097/CAD.0b013e328330e74e] [PMID: 19786863]
[83]
Beswick, R.W.; Ambrose, H.E.; Wagner, S.D. Nocodazole, a microtubule de-polymerising agent, induces apoptosis of chronic lymphocytic leukaemia cells associated with changes in Bcl-2 phosphorylation and expression. Leuk. Res., 2006, 30(4), 427-436.
[http://dx.doi.org/10.1016/j.leukres.2005.08.009] [PMID: 16162358]
[84]
Leoni, L.M. In in Bendamustine: Rescue of an effective antineoplastic agent from the mid-twentieth century; Seminars in Hematology; Elsevier, 2011, Vol. 48, pp. S4-S11.
[85]
Shrivastava, N.; Naim, M.J.; Alam, M.J.; Nawaz, F.; Ahmed, S.; Alam, O. Benzimidazole scaffold as anticancer agent: Synthetic approaches and structure–activity relationship. Arch. Pharm., (Weinheim), 2017, 350, e201700040..
[86]
Wang, X.J.; Chu, N.Y.; Wang, Q.H.; Liu, C.; Jiang, C.G.; Wang, X.Y.; Ikejima, T.; Cheng, M.S. Newly synthesized bis-benzimidazole derivatives exerting anti-tumor activity through induction of apoptosis and autophagy. Bioorg. Med. Chem. Lett., 2012, 22(19), 6297-6300.
[http://dx.doi.org/10.1016/j.bmcl.2012.06.102] [PMID: 22959518]
[87]
Greider, C.W.; Blackburn, E.H. Identification of a specific telomere terminal transferase activity in Tetrahymena extracts. Cell, 1985, 43(2 Pt 1), 405-413.
[http://dx.doi.org/10.1016/0092-8674(85)90170-9] [PMID: 3907856]
[88]
Mergny, J.L.; Hélène, C. G-quadruplex DNA: a target for drug design. Nat. Med., 1998, 4(12), 1366-1367.
[http://dx.doi.org/10.1038/3949] [PMID: 9846570]
[89]
Yang, D.; Okamoto, K. Structural insights into G-quadruplexes: towards new anticancer drugs. Future Med. Chem., 2010, 2(4), 619-646.
[http://dx.doi.org/10.4155/fmc.09.172] [PMID: 20563318]
[90]
Paul, A.; Jain, A.K.; Misra, S.K.; Maji, B.; Muniyappa, K.; Bhattacharya, S. Binding of gemini bisbenzimidazole drugs with human telomeric G-quadruplex dimers: effect of the spacer in the design of potent telomerase inhibitors. PLoS One, 2012, 7(6)e39467
[http://dx.doi.org/10.1371/journal.pone.0039467] [PMID: 22737240]
[91]
Kaulage, M.H.; Maji, B.; Pasadi, S.; Ali, A.; Bhattacharya, S.; Muniyappa, K. Targeting G-quadruplex DNA structures in the telomere and oncogene promoter regions by benzimidazole‒carbazole ligands. Eur. J. Med. Chem., 2018, 148, 178-194.
[http://dx.doi.org/10.1016/j.ejmech.2018.01.091] [PMID: 29459277]
[92]
Burge, S.; Parkinson, G.N.; Hazel, P.; Todd, A.K.; Neidle, S. Quadruplex DNA: sequence, topology and structure. Nucleic Acids Res., 2006, 34(19), 5402-5415.
[http://dx.doi.org/10.1093/nar/gkl655] [PMID: 17012276]
[93]
Biffi, G.; Di Antonio, M.; Tannahill, D.; Balasubramanian, S. Visualization and selective chemical targeting of RNA G-quadruplex structures in the cytoplasm of human cells. Nat. Chem., 2014, 6(1), 75-80.
[http://dx.doi.org/10.1038/nchem.1805] [PMID: 24345950]
[94]
Dhamodharan, V.; Harikrishna, S.; Bhasikuttan, A.C.; Pradeepkumar, P.I. Topology specific stabilization of promoter over telomeric G-quadruplex DNAs by bisbenzimidazole carboxamide derivatives. ACS Chem. Biol., 2015, 10(3), 821-833.
[http://dx.doi.org/10.1021/cb5008597] [PMID: 25495750]
[95]
Sur, S.; Tiwari, V.; Sinha, D.; Kamran, M.Z.; Dubey, K.D.; Suresh Kumar, G.; Tandon, V. Naphthalenediimide-Linked Bisbenzimidazole Derivatives as Telomeric G-Quadruplex-Stabilizing Ligands with Improved Anticancer Activity. ACS Omega, 2017, 2(3), 966-980.
[http://dx.doi.org/10.1021/acsomega.6b00523] [PMID: 30023623]
[96]
Ferrington, D.A.; Gregerson, D.S. Immunoproteasomes: structure, function, and antigen presentation. Prog. Mol. Biol. Transl. Sci., 2012, 109, 75-112.
[97]
Murata, S.; Takahama, Y.; Kasahara, M.; Tanaka, K. The immunoproteasome and thymoproteasome: functions, evolution and human disease. Nat. Immunol., 2018, 19(9), 923-931.
[http://dx.doi.org/10.1038/s41590-018-0186-z] [PMID: 30104634]
[98]
Bellavista, E.; Andreoli, F.; Parenti, M.D.; Martucci, M.; Santoro, A.; Salvioli, S.; Capri, M.; Baruzzi, A.; Del Rio, A.; Franceschi, C.; Mishto, M. Immunoproteasome in cancer and neuropathologies: a new therapeutic target? Curr. Pharm. Des., 2013, 19(4), 702-718.
[http://dx.doi.org/10.2174/138161213804581927] [PMID: 23016859]
[99]
Wehenkel, M.; Ban, J.O.; Ho, Y.K.; Carmony, K.C.; Hong, J.T.; Kim, K.B. A selective inhibitor of the immunoproteasome subunit LMP2 induces apoptosis in PC-3 cells and suppresses tumour growth in nude mice. Br. J. Cancer, 2012, 107(1), 53-62.
[http://dx.doi.org/10.1038/bjc.2012.243] [PMID: 22677907]
[100]
Kuhn, D.J.; Hunsucker, S.A.; Chen, Q.; Voorhees, P.M.; Orlowski, M.; Orlowski, R.Z. Targeted inhibition of the immunoproteasome is a potent strategy against models of multiple myeloma that overcomes resistance to conventional drugs and nonspecific proteasome inhibitors. Blood, 2009, 113(19), 4667-4676.
[http://dx.doi.org/10.1182/blood-2008-07-171637] [PMID: 19050304]
[101]
Koroleva, O.N.; Pham, T.H.; Bouvier, D.; Dufau, L.; Qin, L.; Reboud-Ravaux, M.; Ivanov, A.A.; Zhuze, A.L.; Gromova, E.S.; Bouvier-Durand, M. Bisbenzimidazole derivatives as potent inhibitors of the trypsin-like sites of the immunoproteasome core particle. Biochimie, 2015, 108, 94-100.
[http://dx.doi.org/10.1016/j.biochi.2014.11.002] [PMID: 25446655]
[102]
Cipriano, D.J.; Wang, Y.; Bond, S.; Hinton, A.; Jefferies, K.C.; Qi, J.; Forgac, M. Structure and regulation of the vacuolar ATPases. Biochim. Biophys. Acta, 2008, 1777(7-8), 599-604.
[http://dx.doi.org/10.1016/j.bbabio.2008.03.013] [PMID: 18423392]
[103]
Sennoune, S.R.; Bakunts, K.; Martínez, G.M.; Chua-Tuan, J.L.; Kebir, Y.; Attaya, M.N.; Martínez-Zaguilán, R.; Vacuolar, H. Vacuolar H+-ATPase in human breast cancer cells with distinct metastatic potential: distribution and functional activity. Am. J. Physiol. Cell Physiol., 2004, 286(6), C1443-C1452.
[http://dx.doi.org/10.1152/ajpcell.00407.2003] [PMID: 14761893]
[104]
Sennoune, S.R.; Martinez-Zaguilan, R. Plasmalemmal vacuolar H+-ATPases in angiogenesis, diabetes and cancer. J. Bioenerg. Biomembr., 2007, 39(5-6), 427-433.
[http://dx.doi.org/10.1007/s10863-007-9108-8] [PMID: 18058006]
[105]
Rofstad, E.K.; Mathiesen, B.; Kindem, K.; Galappathi, K. Acidic extracellular pH promotes experimental metastasis of human melanoma cells in athymic nude mice. Cancer Res., 2006, 66(13), 6699-6707.
[http://dx.doi.org/10.1158/0008-5472.CAN-06-0983] [PMID: 16818644]
[106]
Fais, S.; De Milito, A.; You, H.; Qin, W. Targeting vacuolar H+-ATPases as a new strategy against cancer. Cancer Res., 2007, 67(22), 10627-10630.
[http://dx.doi.org/10.1158/0008-5472.CAN-07-1805] [PMID: 18006801]
[107]
Patil, R.; Kulshrestha, A.; Tikoo, A.; Fleetwood, S.; Katara, G.; Kolli, B.; Seibel, W.; Gilman-Sachs, A.; Patil, S.A.; Beaman, K.D. Identification of novel bisbenzimidazole Derivatives as anticancer vacuolar (H+)-ATPase inhibitors. Molecules, 2017, 22(9), 1559-1573.
[http://dx.doi.org/10.3390/molecules22091559] [PMID: 28926955]
[108]
Jones, P.A.; Buckley, J.D. The role of DNA methylation in cancer.Advances in cancer research; Elsevier, 1990, Vol. 54, pp. 1-23.
[109]
Belinsky, S.A.; Nikula, K.J.; Palmisano, W.A.; Michels, R.; Saccomanno, G.; Gabrielson, E.; Baylin, S.B.; Herman, J.G. Aberrant methylation of p16(INK4a) is an early event in lung cancer and a potential biomarker for early diagnosis. Proc. Natl. Acad. Sci. USA, 1998, 95(20), 11891-11896.
[http://dx.doi.org/10.1073/pnas.95.20.11891] [PMID: 9751761]
[110]
Ghoshal, K.; Bai, S. DNA methyltransferases as targets for cancer therapy. Drugs Today (Barc), 2007, 43(6), 395-422.
[http://dx.doi.org/10.1358/dot.2007.43.6.1062666] [PMID: 17612710]
[111]
Jin, B.; Robertson, K.D. DNA methyltransferases, DNA damage repair, and cancer.Epigenetic Alterations in Oncogenesis; Springer, 2013, pp. 3-29.
[http://dx.doi.org/10.1007/978-1-4419-9967-2_1]
[112]
Darii, M.; Rakhimova, A.; Tashlitsky, V.; Kostyuk, S.; Veiko, N.; Ivanov, A.; Zhuze, A.; Gromova, E. Dimeric bisbenzimidazoles: Cytotoxicity and effects on DNA methylation in normal and cancer human cells. Mol. Biol., (N. Y.), 2013, 47, 259-266.
[113]
Cherepanova, N.A.; Ivanov, A.A.; Maltseva, D.V.; Minero, A.S.; Gromyko, A.V.; Streltsov, S.A.; Zhuze, A.L.; Gromova, E.S. Dimeric bisbenzimidazoles inhibit the DNA methylation catalyzed by the murine Dnmt3a catalytic domain. J. Enzyme Inhib. Med. Chem., 2011, 26(2), 295-300.
[http://dx.doi.org/10.3109/14756366.2010.499098] [PMID: 20615081]
[114]
Gerbase, A.C.; Rowley, J.T.; Heymann, D.H.; Berkley, S.F.; Piot, P. Global prevalence and incidence estimates of selected curable STDs. Sex. Transm. Infect., 1998, 74(Suppl. 1), S12-S16.
[PMID: 10023347]
[115]
Zhang, Z.F.; Begg, C.B. Is Trichomonas vaginalis a cause of cervical neoplasia? Results from a combined analysis of 24 studies. Int. J. Epidemiol., 1994, 23(4), 682-690.
[http://dx.doi.org/10.1093/ije/23.4.682] [PMID: 8002180]
[116]
Sorvillo, F.; Kerndt, P. Trichomonas vaginalis and amplification of HIV-1 transmission. Lancet, 1998, 351(9097), 213-214.
[http://dx.doi.org/10.1016/S0140-6736(05)78181-2] [PMID: 9449891]
[117]
Nailor, M.D.; Sobel, J.D. Tinidazole for the treatment of vaginal infections. Expert Opin. Investig. Drugs, 2007, 16(5), 743-751.
[http://dx.doi.org/10.1517/13543784.16.5.743] [PMID: 17461745]
[118]
Austin, T.W.; Smith, E.A.; Darwish, R.; Ralph, E.D.; Pattison, F.L. Metronidazole in a single dose for the treatment of trichomoniasis. Failure of a 1-g single dose. Br. J. Vener. Dis., 1982, 58(2), 121-123.
[http://dx.doi.org/10.1136/sti.58.2.121] [PMID: 7039761]
[119]
Aguirre, G.; Boiani, M.; Cerecetto, H.; Gerpe, A.; González, M.; Sainz, Y.F.; Denicola, A.; De Ocáriz, C.O.; Nogal, J.J.; Montero, D.; Escario, J.A. Novel antiprotozoal products: imidazole and benzimidazole N-oxide derivatives and related compounds. Arch. Pharm. (Weinheim), 2004, 337(5), 259-270.
[http://dx.doi.org/10.1002/ardp.200300840] [PMID: 15095419]
[120]
Korosh, T.; Bujans, E.; Morada, M.; Karaalioglu, C.; Vanden Eynde, J.J.; Mayence, A.; Huang, T.L.; Yarlett, N. Potential of bisbenzimidazole-analogs toward metronidazole-resistant Trichomonas vaginalis isolates. Chem. Biol. Drug Des., 2017, 90(4), 489-495.
[http://dx.doi.org/10.1111/cbdd.12972] [PMID: 28296056]
[121]
Martinez, A.J. Free-living amoebas; natural history, prevention, diagnosis, pathology and treatment of disease; CRC Press, 1985, p. 156.
[122]
Martinez, A.J.; Visvesvara, G.S. Free-living, amphizoic and opportunistic amebas. Brain Pathol., 1997, 7(1), 583-598.
[http://dx.doi.org/10.1111/j.1750-3639.1997.tb01076.x] [PMID: 9034567]
[123]
Król-Turmińska, K.; Olender, A. Human infections caused by free-living amoebae. Ann. Agric. Environ. Med., 2017, 24(2), 254-260.
[http://dx.doi.org/10.5604/12321966.1233568] [PMID: 28664704]
[124]
Visvesvara, G.S. Free-living amoebae as opportunistic agents of human disease. J. Neuroparasitology, 2010, 1, 100802
[125]
Visvesvara, G.S.; Moura, H.; Schuster, F.L. Pathogenic and opportunistic free-living amoebae: Acanthamoeba spp., Balamuthia mandrillaris, Naegleria fowleri, and Sappinia diploidea. FEMS Immunol. Med. Microbiol., 2007, 50(1), 1-26.
[http://dx.doi.org/10.1111/j.1574-695X.2007.00232.x] [PMID: 17428307]
[126]
Visvesvara, G.S. Infections with free-living amebae.Handbook of clinical neurology; Elsevier, 2013, Vol. 114, pp. 153-168.
[127]
Schuster, F.L.; Visvesvara, G.S. Opportunistic amoebae: challenges in prophylaxis and treatment. Drug Resist. Updat., 2004, 7(1), 41-51.
[http://dx.doi.org/10.1016/j.drup.2004.01.002] [PMID: 15072770]
[128]
Visvesvara, G.S. Amebic meningoencephalitides and keratitis: challenges in diagnosis and treatment. Curr. Opin. Infect. Dis., 2010, 23(6), 590-594.
[http://dx.doi.org/10.1097/QCO.0b013e32833ed78b] [PMID: 20802332]
[129]
Perrine, D.; Chenu, J.P.; Georges, P.; Lancelot, J.C.; Saturnino, C.; Robba, M. Amoebicidal efficiencies of various diamidines against two strains of Acanthamoeba polyphaga. Antimicrob. Agents Chemother., 1995, 39(2), 339-342.
[http://dx.doi.org/10.1128/AAC.39.2.339] [PMID: 7726493]
[130]
Czarny, A.; Wilson, W.; Boykin, D.W. Synthesis of mono‐cationic and dicationic analogs of hoechst 33258. J. Heterocycl. Chem., 1996, 33, 1393-1397.
[http://dx.doi.org/10.1002/jhet.5570330463]
[131]
Alp, M.; Göker, H.; Brun, R.; Yildiz, S. Synthesis and antiparasitic and antifungal evaluation of 2′-arylsubstituted-1H,1‘H-[2,5’]bisbenzimidazolyl-5-carboxamidines. Eur. J. Med. Chem., 2009, 44(5), 2002-2008.
[http://dx.doi.org/10.1016/j.ejmech.2008.10.003] [PMID: 19010569]
[132]
Hu, L.; Kully, M.L.; Boykin, D.W.; Abood, N. Synthesis and in vitro activity of dicationic bis-benzimidazoles as a new class of anti-MRSA and anti-VRE agents. Bioorg. Med. Chem. Lett., 2009, 19(5), 1292-1295.
[http://dx.doi.org/10.1016/j.bmcl.2009.01.075] [PMID: 19208475]
[133]
Rice, C.A.; Colon, B.L.; Alp, M.; Göker, H.; Boykin, D.W.; Kyle, D.E. Bis-benzimidazole hits against Naegleria fowleri discovered with new high-throughput screens. Antimicrob. Agents Chemother., 2015, 59(4), 2037-2044.
[http://dx.doi.org/10.1128/AAC.05122-14] [PMID: 25605363]
[134]
Akihama, S.; Okude, M.; Sato, K.; Iwabuchi, S. Inhibitory effect of 1,2-bis(2-benzimidazolyl)-1,2-ethanediol derivatives on poliovirus. Nature, 1968, 217(5128), 562-563.
[http://dx.doi.org/10.1038/217562a0] [PMID: 4295938]
[135]
Elson-Schwab, L.; Tor, Y. Targeting HIV-1 RNA with aminoglycoside antibiotics and their derivatives.Aminoglycoside Antibiotics: From Chemical Biology to Drug Discovery; Arya, D.P., Ed.; Wiley: New York, 2007, pp. 267-287.
[http://dx.doi.org/10.1002/9780470149676.ch10]
[136]
Shipkowitz, N.L.; Bower, R.R.; Schleicher, J.B.; Aquino, F.; Appell, R.N.; Roderick, W.R. Antiviral activity of a bis-benzimidazole against experimental rhinovirus infections in chimpanzees. Appl. Microbiol., 1972, 23(1), 117-122.
[http://dx.doi.org/10.1128/AEM.23.1.117-122.1972] [PMID: 4333893]
[137]
Hudson, J.B.; Graham, E.A.; Simpson, M.F. The efficacy of amantadine and other antiviral compounds against two salmonid viruses in vitro. Antiviral Res., 1988, 9(6), 379-385.
[http://dx.doi.org/10.1016/0166-3542(88)90039-3] [PMID: 3228282]
[138]
Schleicher, J.B.; Aquino, F.; Rueter, A.; Roderick, W.R.; Appell, R.N. Antiviral activity in tissue culture systems of bis-benzimidazoles, potent inhibitors of rhinoviruses. Appl. Microbiol., 1972, 23(1), 113-116.
[http://dx.doi.org/10.1128/AEM.23.1.113-116.1972] [PMID: 4333892]
[139]
Elson-Schwab, L.; Tor, Y. Targeting HIV-1 RNA with aminoglycoside antibiotics and their derivatives.Aminoglycoside Antibiotics: From Chemical Biology to Drug Discovery; Arya, D.P., Ed.; Wiley: New York, 2007, pp. 267-287.
[http://dx.doi.org/10.1002/9780470149676.ch10]
[140]
Sakai, H.; Kawamura, M.; Sakuragi, J.; Sakuragi, S.; Shibata, R.; Ishimoto, A.; Ono, N.; Ueda, S.; Adachi, A. Integration is essential for efficient gene expression of human immunodeficiency virus type 1. J. Virol., 1993, 67(3), 1169-1174.
[http://dx.doi.org/10.1128/JVI.67.3.1169-1174.1993] [PMID: 8437208]
[141]
Gromyko, A.V.; Salianov, V.I.; Strel’tsov, S.A.; Oleĭnikov, V.A.; Korolev, S.P.; Gottikh, M.B.; Zhuze, A.L. [DNA sequence-specific ligands: XIII. New Dimeric Hoechst 33258 molecules, inhibitors of HIV-1 integrase in vitro]. Bioorg. Khim., 2007, 33(6), 613-623.
[PMID: 18173124]
[142]
Korolev, S.; Tashlitsky, V.; Smolov, M.; Gromyko, A.; Zhuze, A.; Agapkina, Y.Y.; Gottikh, M. HIV-1 integrase inhibition by dimeric bisbenzimidazoles with different spacer structures. Mol. Biol., (N.Y ), 2010, 44, 633-641.
[143]
Koval, V.S.; Arutyunyan, A.F.; Salyanov, V.L.; Klimova, R.R.; Kushch, A.A.; Rybalkina, E.Y.; Susova, O.Y.; Zhuze, A.L. DNA sequence-specific ligands. XVII. Synthesis, spectral properties, virological and biochemical studies of fluorescent dimeric bisbenzimidazoles DBA(n). Bioorg. Med. Chem., 2018, 26(9), 2302-2309.
[http://dx.doi.org/10.1016/j.bmc.2018.03.018] [PMID: 29602675]
[144]
Beer, P.D.; Gale, P.A. Anion recognition and sensing: The state of the art and future perspectives. Angew. Chem. Int. Ed. Engl., 2001, 40(3), 486-516.
[http://dx.doi.org/10.1002/1521-3773(20010202)40:3<486:AID-ANIE486>3.0.CO;2-P] [PMID: 11180358]
[145]
Molina, P.; Zapata, F.; Caballero, A. Anion recognition strategies based on combined noncovalent interactions. Chem. Rev., 2017, 117(15), 9907-9972.
[http://dx.doi.org/10.1021/acs.chemrev.6b00814] [PMID: 28665114]
[146]
Moragues, M.E.; Martínez-Máñez, R.; Sancenón, F. Chromogenic and fluorogenic chemosensors and reagents for anions. A comprehensive review of the year 2009. Chem. Soc. Rev., 2011, 40(5), 2593-2643.
[http://dx.doi.org/10.1039/c0cs00015a] [PMID: 21279197]
[147]
Santos-Figueroa, L.E.; Moragues, M.E.; Climent, E.; Agostini, A.; Martínez-Máñez, R.; Sancenón, F. Chromogenic and fluorogenic chemosensors and reagents for anions. A comprehensive review of the years 2010-2011. Chem. Soc. Rev., 2013, 42(8), 3489-3613.
[http://dx.doi.org/10.1039/c3cs35429f] [PMID: 23400370]
[148]
Sessler, J.L.; Gale, P.A.; Cho, W. Anion receptor chemistry; Royal Society of Chemistry, 2006, Vol. 8, .
[149]
Ponticorvo, L.; Rittenberg, D.; Bloch, K. The utilization of acetate for the synthesis of fatty acids, cholesterol, and protoporphyrin. J. Biol. Chem., 1949, 179, 830-842.
[150]
Duncan, S.H.; Barcenilla, A.; Stewart, C.S.; Pryde, S.E.; Flint, H.J. Acetate utilization and butyryl coenzyme A (CoA):acetate-CoA transferase in butyrate-producing bacteria from the human large intestine. Appl. Environ. Microbiol., 2002, 68(10), 5186-5190.
[http://dx.doi.org/10.1128/AEM.68.10.5186-5190.2002] [PMID: 12324374]
[151]
Frenkel, G.; Nelson, D.L.; Soltvedt, B.C.; Lehninger, A.L. Test Bank for Nelson and Cox, Lehninger Principles of Biochemistry; Worth Publishers, 2000.
[152]
Zapata, F.; Caballero, A.; Tárraga, A.; Molina, P. Ferrocene-substituted nitrogen-rich ring systems as multichannel molecular chemosensors for anions in aqueous environment. J. Org. Chem., 2010, 75(1), 162-169.
[http://dx.doi.org/10.1021/jo9023446] [PMID: 19968276]
[153]
Gupta, C. Role of iron (Fe) in body. IOSR J. Appl. Chem. (IOSRJAC), 2014, 7, 38-46.
[154]
Kühn, L. In Control of cellular iron transport and storage at the molecular level; Iron nutrition in health and disease; John Libbey & Company, 1996, pp. 17-29.
[155]
Kanduti, D.; Sterbenk, P.; Artnik, B. Fluoride: a review of use and effects on health. Mater. Sociomed., 2016, 28(2), 133-137.
[http://dx.doi.org/10.5455/msm.2016.28.133-137] [PMID: 27147921]
[156]
Liu, J.; Xie, Y.; Lin, Q.; Shi, B.; Zhang, P.; Zhang, Y.; Wei, T. Dipodal fluorescent chemosensor for Fe3 and resultant complex as a chemosensor for fluoride. Sens. Actuators B Chem., 2013, 186, 657-665.
[http://dx.doi.org/10.1016/j.snb.2013.06.080]
[157]
Liu, J.; Lin, Q.; Zhang, Y.; Wei, T. A reversible fluorescent chemosensor for Fe 3 and H 2 PO 4− with “on-off-on” switching in aqueous media. Sci. China Chem., 2014, 57, 1257-1263.
[http://dx.doi.org/10.1007/s11426-014-5108-9]
[158]
Deng, L.; Chen, C.; Zhou, M.; Guo, S.; Wang, E.; Dong, S. Integrated self-powered microchip biosensor for endogenous biological cyanide. Anal. Chem., 2010, 82(10), 4283-4287.
[http://dx.doi.org/10.1021/ac100274s] [PMID: 20402491]
[159]
Sun, Y.; Fan, S.; Duan, L.; Li, R. A ratiometric fluorescent probe based on benzo [e] indolium for cyanide ion in water. Sens. Actuators B Chem., 2013, 185, 638-643.
[http://dx.doi.org/10.1016/j.snb.2013.05.049]
[160]
Liu, J.; Lin, Q.; Yao, H.; Wang, M.; Zhang, Y.; Wei, T. Turn-on fluorescence sensing of cyanide ions in aqueous solution. Chin. Chem. Lett., 2014, 25, 35-38.
[http://dx.doi.org/10.1016/j.cclet.2013.10.026]
[161]
Wang, M.Q.; Ren, G.Y.; Zhao, S.; Lian, G.C.; Chen, T.T.; Ci, Y.; Li, H.Y. Development of a carbazole-based fluorescence probe for G-quadruplex DNA: The importance of side-group effect on binding specificity. Spectrochim. Acta A Mol. Biomol. Spectrosc., 2018, 199, 441-447.
[http://dx.doi.org/10.1016/j.saa.2018.03.083] [PMID: 29649680]
[162]
Brazeau, A.L.; Yuan, K.; Ko, S.B.; Wyman, I.; Wang, S. Anion sensing with a blue fluorescent triarylboron-functionalized bisbenzimidazole and its bisbenzimidazolium salt. ACS Omega, 2017, 2(12), 8625-8632.
[http://dx.doi.org/10.1021/acsomega.7b01631] [PMID: 31457395]
[163]
Day, C. Metabolic syndrome, or What you will: definitions and epidemiology. Diab. Vasc. Dis. Res., 2007, 4(1), 32-38.
[http://dx.doi.org/10.3132/dvdr.2007.003] [PMID: 17469041]
[164]
Kaur, J. A comprehensive review on metabolic syndrome. Cardiol. Res. Pract., 2014, 2014, 943162
[http://dx.doi.org/10.1155/2014/943162]
[165]
Gami, A.S.; Witt, B.J.; Howard, D.E.; Erwin, P.J.; Gami, L.A.; Somers, V.K.; Montori, V.M. Metabolic syndrome and risk of incident cardiovascular events and death: a systematic review and meta-analysis of longitudinal studies. J. Am. Coll. Cardiol., 2007, 49(4), 403-414.
[http://dx.doi.org/10.1016/j.jacc.2006.09.032] [PMID: 17258085]
[166]
Balkau, B.; Valensi, P.; Eschwège, E.; Slama, G. A review of the metabolic syndrome. Diabetes Metab., 2007, 33(6), 405-413.
[http://dx.doi.org/10.1016/j.diabet.2007.08.001] [PMID: 17981485]
[167]
Morphy, R.; Rankovic, Z. Designed multiple ligands. An emerging drug discovery paradigm. J. Med. Chem., 2005, 48(21), 6523-6543.
[http://dx.doi.org/10.1021/jm058225d] [PMID: 16220969]
[168]
Morphy, R.; Rankovic, Z. The physicochemical challenges of designing multiple ligands. J. Med. Chem., 2006, 49(16), 4961-4970.
[http://dx.doi.org/10.1021/jm0603015] [PMID: 16884308]
[169]
Pershadsingh, H.A. Dual peroxisome proliferator-activated receptor-α/γ agonists. Treat. Endocrinol., 2006, 5(2), 89-99.
[http://dx.doi.org/10.2165/00024677-200605020-00003] [PMID: 16542049]
[170]
Ahmed, I.; Furlong, K.; Flood, J.; Treat, V.P.; Goldstein, B.J. Dual PPAR α/γ agonists: promises and pitfalls in type 2 diabetes. Am. J. Ther., 2007, 14(1), 49-62.
[http://dx.doi.org/10.1097/01.mjt.0000212890.82339.8d] [PMID: 17303976]
[171]
Cavender, M.A.; Lincoff, A.M. Therapeutic potential of aleglitazar, a new dual PPAR-α/γ agonist: implications for cardiovascular disease in patients with diabetes mellitus. Am. J. Cardiovasc. Drugs, 2010, 10(4), 209-216.
[http://dx.doi.org/10.2165/11539500-000000000-00000] [PMID: 20653327]
[172]
Mizuno, C.S.; Chittiboyina, A.G.; Patny, A.; Kurtz, T.W.; Pershadsingh, H.A.; Speth, R.C.; Karamyan, V.T.; Avery, M.A. Design, synthesis, and docking studies of telmisartan analogs for the treatment of metabolic syndrome. Med. Chem. Res., 2009, 18, 611-628.
[http://dx.doi.org/10.1007/s00044-008-9153-9]
[173]
Chittiboyina, A.G.; Mizuno, C.S.; Desai, P.V.; Patny, A.; Kurtz, T.W.; Pershadsingh, H.A.; Speth, R.C.; Karamyan, V.; Avery, M.A. Design, synthesis, and docking studies of novel telmisartan-glitazone hybrid analogs for the treatment of metabolic syndrome. Med. Chem. Res., 2009, 18, 589-610.
[http://dx.doi.org/10.1007/s00044-008-9152-x]
[174]
Ries, U.J.; Mihm, G.; Narr, B.; Hasselbach, K.M.; Wittneben, H.; Entzeroth, M.; van Meel, J.C.; Wienen, W.; Hauel, N.H. 6-Substituted benzimidazoles as new nonpeptide angiotensin II receptor antagonists: synthesis, biological activity, and structure-activity relationships. J. Med. Chem., 1993, 36(25), 4040-4051.
[http://dx.doi.org/10.1021/jm00077a007] [PMID: 8258826]
[175]
Kubo, K.; Kohara, Y.; Imamiya, E.; Sugiura, Y.; Inada, Y.; Furukawa, Y.; Nishikawa, K.; Naka, T. Nonpeptide angiotensin II receptor antagonists. Synthesis and biological activity of benzimidazolecarboxylic acids. J. Med. Chem., 1993, 36(15), 2182-2195.
[http://dx.doi.org/10.1021/jm00067a016] [PMID: 8340921]
[176]
Kubo, K.; Inada, Y.; Kohara, Y.; Sugiura, Y.; Ojima, M.; Itoh, K.; Furukawa, Y.; Nishikawa, K.; Naka, T. Nonpeptide angiotensin II receptor antagonists. Synthesis and biological activity of benzimidazoles. J. Med. Chem., 1993, 36(12), 1772-1784.
[http://dx.doi.org/10.1021/jm00064a011] [PMID: 8510105]
[177]
Bali, A.; Bansal, Y.; Sugumaran, M.; Saggu, J.S.; Balakumar, P.; Kaur, G.; Bansal, G.; Sharma, A.; Singh, M. Design, synthesis, and evaluation of novelly substituted benzimidazole compounds as angiotensin II receptor antagonists. Bioorg. Med. Chem. Lett., 2005, 15(17), 3962-3965.
[http://dx.doi.org/10.1016/j.bmcl.2005.05.054] [PMID: 16039125]
[178]
Shah, D.I.; Sharma, M.; Bansal, Y.; Bansal, G.; Singh, M.; Angiotensin, I.I. Angiotensin II--AT1 receptor antagonists: design, synthesis and evaluation of substituted carboxamido benzimidazole derivatives. Eur. J. Med. Chem., 2008, 43(9), 1808-1812.
[http://dx.doi.org/10.1016/j.ejmech.2007.11.008] [PMID: 18158200]
[179]
Vyas, V.K.; Ghate, M. Substituted benzimidazole derivatives as angiotensin II-AT1 receptor antagonist: a review. Mini Rev. Med. Chem., 2010, 10(14), 1366-1384.
[http://dx.doi.org/10.2174/138955710793564151] [PMID: 20937029]
[180]
Mizuno, C.S.; Chittiboyina, A.G.; Shah, F.H.; Patny, A.; Kurtz, T.W.; Pershadsingh, H.A.; Speth, R.C.; Karamyan, V.T.; Carvalho, P.B.; Avery, M.A. Design, synthesis, and docking studies of novel benzimidazoles for the treatment of metabolic syndrome. J. Med. Chem., 2010, 53(3), 1076-1085.
[http://dx.doi.org/10.1021/jm901272d] [PMID: 20073471]
[181]
Kumar, J.A.; Tiwari, A.K.; Ali, A.Z.; Madhusudhana, K.; Reddy, B.S.; Ramakrishna, S.; China Raju, B. New antihyperglycemic, α-glucosidase inhibitory, and cytotoxic derivatives of benzimidazoles. J. Enzyme Inhib. Med. Chem., 2010, 25(1), 80-86.
[http://dx.doi.org/10.3109/14756360903017122] [PMID: 20030512]
[182]
Zawawi, N.K.N.A.; Taha, M.; Ahmat, N.; Wadood, A.; Ismail, N.H.; Rahim, F.; Azam, S.S.; Abdullah, N. Benzimidazole derivatives as new α-glucosidase inhibitors and in silico studies. Bioorg. Chem., 2016, 64, 29-36.
[http://dx.doi.org/10.1016/j.bioorg.2015.11.006] [PMID: 26637946]
[183]
Dinparast, L.; Valizadeh, H.; Bahadori, M.B.; Soltani, S.; Asghari, B.; Rashidi, M. Design, synthesis, α-glucosidase inhibitory activity, molecular docking and QSAR studies of benzimidazole derivatives. J. Mol. Struct., 2016, 1114, 84-94.
[http://dx.doi.org/10.1016/j.molstruc.2016.02.005]
[184]
Kwak, H.J.; Pyun, Y.M.; Kim, J.Y.; Pagire, H.S.; Kim, K.Y.; Kim, K.R.; Rhee, S.D.; Jung, W.H.; Song, J.S.; Bae, M.A.; Lee, D.H.; Ahn, J.H. Synthesis and biological evaluation of aminobenzimidazole derivatives with a phenylcyclohexyl acetic acid group as anti-obesity and anti-diabetic agents. Bioorg. Med. Chem. Lett., 2013, 23(16), 4713-4718.
[http://dx.doi.org/10.1016/j.bmcl.2013.05.081] [PMID: 23810496]
[185]
Shingalapur, R.V.; Hosamani, K.M.; Keri, R.S.; Hugar, M.H. Derivatives of benzimidazole pharmacophore: synthesis, anticonvulsant, antidiabetic and DNA cleavage studies. Eur. J. Med. Chem., 2010, 45(5), 1753-1759.
[http://dx.doi.org/10.1016/j.ejmech.2010.01.007] [PMID: 20122763]
[186]
Deshpande, S.M.; Datta, K.C.; Sanyal, A.K.; Raina, M.K. Potential antidiabetics. Benzimidazole-2-sulfonylglycamide derivatives. J. Med. Chem., 1970, 13(1), 143-144.
[http://dx.doi.org/10.1021/jm00295a040] [PMID: 5412090]
[187]
Özil, M.; Emirik, M.; Beldüz, A.; Ülker, S. Molecular docking studies and synthesis of novel bisbenzimidazole derivatives as inhibitors of α-glucosidase. Bioorg. Med. Chem., 2016, 24(21), 5103-5114.
[http://dx.doi.org/10.1016/j.bmc.2016.08.024] [PMID: 27576293]
[188]
Podolsky, D.K. Inflammatory bowel disease (1). N. Engl. J. Med., 1991, 325(13), 928-937.
[http://dx.doi.org/10.1056/NEJM199109263251306] [PMID: 1881418]
[189]
Bilsborough, J.; Targan, S.R.; Snapper, S.B. Therapeutic targets in inflammatory bowel disease: current and future. Am. J. Gastroenterol., 2016, 3, 27-37.
[http://dx.doi.org/10.1038/ajgsup.2016.18]
[190]
Lu, P.; Hontecillas, R.; Philipson, C.W.; Bassaganya-Riera, J. Lanthionine synthetase component C-like protein 2: a new drug target for inflammatory diseases and diabetes. Curr. Drug Targets, 2014, 15(6), 565-572.
[http://dx.doi.org/10.2174/1389450115666140313123714] [PMID: 24628287]
[191]
Carbo, A.; Gandour, R.D.; Hontecillas, R.; Philipson, N.; Uren, A.; Bassaganya-Riera, J.; An, N. N-Bis (benzimidazolylpicolinoyl) piperazine (BT-11): A novel lanthionine synthetase C-like 2-based therapeutic for inflammatory bowel disease. J. Med. Chem., 2016, 59(22), 10113-10126.
[http://dx.doi.org/10.1021/acs.jmedchem.6b00412] [PMID: 27933891]
[192]
Hruby, A.; Hu, F.B. The epidemiology of obesity: A big picture. Pharmacoeconomics, 2015, 33(7), 673-689.
[http://dx.doi.org/10.1007/s40273-014-0243-x] [PMID: 25471927]
[193]
Ioannides-Demos, L.L.; Proietto, J.; Tonkin, A.M.; McNeil, J.J. Safety of drug therapies used for weight loss and treatment of obesity. Drug Saf., 2006, 29(4), 277-302.
[http://dx.doi.org/10.2165/00002018-200629040-00001] [PMID: 16569079]
[194]
Glazer, G. Long-term pharmacotherapy of obesity 2000: a review of efficacy and safety. Arch. Intern. Med., 2001, 161(15), 1814-1824.
[http://dx.doi.org/10.1001/archinte.161.15.1814] [PMID: 11493122]
[195]
Powell, A.G.; Apovian, C.M.; Aronne, L.J. New drug targets for the treatment of obesity. Clin. Pharmacol. Ther., 2011, 90(1), 40-51.
[http://dx.doi.org/10.1038/clpt.2011.82] [PMID: 21654742]
[196]
Drent, M.L.; van der Veen, E.A. Lipase inhibition: a novel concept in the treatment of obesity. Int. J. Obes. Relat. Metab. Disord., 1993, 17(4), 241-244.
[PMID: 8387973]
[197]
Franson, K.; Rössner, S. Fat intake and food choices during weight reduction with diet, behavioural modification and a lipase inhibitor. J. Intern. Med., 2000, 247(5), 607-614.
[http://dx.doi.org/10.1046/j.1365-2796.2000.t01-1-00666.x] [PMID: 10810001]
[198]
Menteşe, E.; Bektaş, H.; Ülker, S.; Bekircan, O.; Kahveci, B. Microwave-assisted synthesis of new benzimidazole derivatives with lipase inhibition activity. J. Enzyme Inhib. Med. Chem., 2014, 29(1), 64-68.
[http://dx.doi.org/10.3109/14756366.2012.753880] [PMID: 23327641]
[199]
Menteşe, E.; Yılmaz, F.; Karaali, N.; Ülker, S.; Kahveci, B. Rapid synthesis and lipase inhibition activity of some new benzimidazole and perimidine derivatives. Bioorg. Khim., 2014, 40(3), 363-369.
[http://dx.doi.org/10.7868/S0132342314030099] [PMID: 25898744]
[200]
Kahveci, B.; Menteşe, E.; Özil, M.; Ülker, S.; Ertürk, M. An efficient synthesis of benzimidazoles via a microwave technique and evaluation of their biological activities. Monatsh. Chem., 2013, 144, 993-1001.
[http://dx.doi.org/10.1007/s00706-012-0916-0]
[201]
Menteşe, E.; Yılmaz, F.; Emirik, M.; Ülker, S.; Kahveci, B. Synthesis, molecular docking and biological evaluation of some benzimidazole derivatives as potent pancreatic lipase inhibitors. Bioorg. Chem., 2018, 76, 478-486.
[http://dx.doi.org/10.1016/j.bioorg.2017.12.023] [PMID: 29306066]
[202]
Mikhailov, M.V.; Zasedatelev, A.S.; Krylov, A.S.; Gurskii, G.V. Mechanism of AT base pairs recognition by molecules of dye "Hoechst 33258". Mol. Biol., (Mosk), 1981, 15, 690-705.
[203]
Gromyko, A.V.; Strel’tsov, S.A.; Zhuze, A.L. [DNA-specific dimeric bisbenzimidazole]. Bioorg. Khim., 2004, 30(4), 446-448.
[PMID: 15469021]
[204]
Gromyko, A.; Popov, K.; Mosoleva, A.; Streltsov, S.; Grokhovsky, S.; Oleinikov, V.; Zhuze, A. DNA sequence-specific ligands: XII. Synthesis and cytological studies of dimeric Hoechst 33258 molecules. Russ. J. Bioorganic Chem., 2005, 31, 344-351.
[http://dx.doi.org/10.1007/s11171-005-0047-z]
[205]
Ivanov, A.; Salianov, V.; Strel’tsov, S.; Cherepanova, N.; Gromova, E.; Zhuze, A. [DNA sequence-specific ligands: XIV. Synthesis of fluorescent biologicaly active dimeric bisbenzimidazoles-DB(3, 4, 5, 7, 11)]. Russ. J. Bioorganic Chem., 2011, 37, 472-482.
[http://dx.doi.org/10.1134/S1068162011040054]
[206]
Atlung, T.; Ingmer, H. H-NS: a modulator of environmentally regulated gene expression. Mol. Microbiol., 1997, 24(1), 7-17.
[http://dx.doi.org/10.1046/j.1365-2958.1997.3151679.x] [PMID: 9140961]
[207]
Dorman, C.J.H-N.S. H-NS: a universal regulator for a dynamic genome. Nat. Rev. Microbiol., 2004, 2(5), 391-400.
[http://dx.doi.org/10.1038/nrmicro883] [PMID: 15100692]
[208]
Hommais, F.; Krin, E.; Laurent-Winter, C.; Soutourina, O.; Malpertuy, A.; Le Caer, J.P.; Danchin, A.; Bertin, P. Large-scale monitoring of pleiotropic regulation of gene expression by the prokaryotic nucleoid-associated protein, H-NS. Mol. Microbiol., 2001, 40(1), 20-36.
[http://dx.doi.org/10.1046/j.1365-2958.2001.02358.x] [PMID: 11298273]
[209]
Yamada, H.; Yoshida, T.; Tanaka, K.; Sasakawa, C.; Mizuno, T. Molecular analysis of the Escherichia coli hns gene encoding a DNA-binding protein, which preferentially recognizes curved DNA sequences. Mol. Gen. Genet., 1991, 230(1-2), 332-336.
[http://dx.doi.org/10.1007/BF00290685] [PMID: 1745240]
[210]
Owen-Hughes, T.A.; Pavitt, G.D.; Santos, D.S.; Sidebotham, J.M.; Hulton, C.S.; Hinton, J.C.; Higgins, C.F. The chromatin-associated protein H-NS interacts with curved DNA to influence DNA topology and gene expression. Cell, 1992, 71(2), 255-265.
[http://dx.doi.org/10.1016/0092-8674(92)90354-F] [PMID: 1423593]
[211]
Melkina, O.E.; Koval, V.S.; Ivanov, A.A.; Zhuze, A.L.; Zavilgelsky, G.B. DNA sequence-specific dimeric bisbenzimidazoles DBP(n) and DBPA(n) as inhibitors of H-NS silencing in bacterial cells. Microbiol. Res., 2018, 207, 75-82.
[http://dx.doi.org/10.1016/j.micres.2017.11.007] [PMID: 29458871]
[212]
Ivanov, A.A.; Koval, V.S.; Susova, O.Y.; Salyanov, V.I.; Oleinikov, V.A.; Stomakhin, A.A.; Shalginskikh, N.A.; Kvasha, M.A.; Kirsanova, O.V.; Gromova, E.S.; Zhuze, A.L. DNA specific fluorescent symmetric dimeric bisbenzimidazoles DBP(n): the synthesis, spectral properties, and biological activity. Bioorg. Med. Chem. Lett., 2015, 25(13), 2634-2638.
[http://dx.doi.org/10.1016/j.bmcl.2015.04.087] [PMID: 25987376]
[213]
Ivanov, A.; Salyanov, V.; Zhuze, A. DNA sequence-specific ligands: XV. Synthesis andspectral characteristics of a new series of dimeric bisbenzimidazoles DB (1, 2, 6, 8, 9, 10, 12). Russ. J. Bioorganic Chem., 2016, 42, 183-190.
[http://dx.doi.org/10.1134/S1068162016020059]

Rights & Permissions Print Cite
© 2024 Bentham Science Publishers | Privacy Policy