[1]
Olsson, E.; Honeth, G.; Bendahl, P.O.; Saal, L.H.; Gruvberger-Saal, S.; Ringnér, M.; Vallon-Christersson, J.; Jönsson, G.; Holm, K.; Lövgren, K.; Fernö, M.; Grabau, D.; Borg, Å.; Hegardt, C. CD44 isoforms are heterogeneously expressed in breast cancer and correlate with tumor subtypes and cancer stem cell markers. BMC Cancer, 2011, 11(1), 418.
[2]
Louderbough, J.M.; Schroeder, J.A. Understanding the dual nature of CD44 in breast cancer progression. Mol. Cancer Res., 2011, 9(12), 1573-1586.
[3]
Shao, J.; Fan, W.; Ma, B.; Wu, Y. Breast cancer stem cells expressing different stem cell markers exhibit distinct biological characteristics. Mol. Med. Rep., 2016, 14(6), 4991-4998.
[4]
Yan, W.; Chen, Y.; Yao, Y.; Zhang, H.; Wang, T. Increased invasion and tumorigenicity capacity of CD44+/CD24- breast cancer MCF7 cells in vitro and in nude mice. Cancer Cell Int., 2013, 13(1), 62.
[5]
Hiscox, S.; Baruah, B.; Smith, C.; Bellerby, R.; Goddard, L.; Jordan, N.; Poghosyan, Z.; Nicholson, R.I.; Barrett-Lee, P.; Gee, J. Overexpression of CD44 accompanies acquired tamoxifen resistance in MCF7 cells and augments their sensitivity to the stromal factors, heregulin and hyaluronan. BMC Cancer, 2012, 12, 458.
[6]
Shirure, V.S.; Liu, T.; Delgadillo, L.F.; Cuckler, C.M.; Tees, D.F.; Benencia, F.; Goetz, D.J.; Burdick, M.M. CD44 variant isoforms expressed by breast cancer cells are functional E-selectin ligands under flow conditions. Am. J. Physiol. Cell Physiol., 2015, 308(1), C68-C78.
[7]
Ponta, H.; Wainwright, D.; Herrlich, P. Molecules in focus the CD44 protein family. Int. J. Biochem. Cell Biol., 1998, 30(3), 299-305.
[8]
Murai, T.; Sougawa, N.; Kawashima, H.; Yamaguchi, K.; Miyasaka, M. CD44-chondroitin sulfate interactions mediate leukocyte rolling under physiological flow conditions. Immunol. Lett., 2004, 93(2-3), 163-170.
[9]
Fujimoto, T.; Kawashima, H.; Tanaka, T.; Hirose, M.; Toyama-Sorimachi, N.; Matsuzawa, Y.; Miyasaka, M. CD44 binds a chondroitin sulfate proteoglycan, aggrecan. Int. Immunol., 2001, 13(3), 359-366.
[10]
Nagy, A.; Schally, A.V. Cytotoxic analogs of luteinizing hormone-releasing hormone (LHRH): A new approach to targeted chemotherapy. Drugs Future, 2002, 27(4), 359.
[11]
Ben-Yehudah, A.; Lorberboum-Galski, H. Targeted cancer therapy with gonadotropin-releasing hormone chimeric proteins. Expert Rev. Anticancer Ther., 2004, 4(1), 151-161.
[12]
Leuschner, C.; Enright, F.M.; Gawronska-Kozak, B.; Hansel, W. Human prostate cancer cells and xenografts are targeted and destroyed through luteinizing hormone releasing hormone receptors. Prostate, 2003, 56(4), 239-249.
[13]
Qi, L.; Nett, T.M.; Allen, M.C.; Sha, X.; Harrison, G.S.; Frederick, B.A.; Crawford, E.D.; Glode, L.M. Binding and cytotoxicity of conjugated and recombinant fusion proteins targeted to the gonadotropin-releasing hormone receptor. Cancer Res., 2004, 64(6), 2090-2095.
[14]
Tambe, P.; Kumar, P.; Paknikar, K.M.; Gajbhiye, V. Decapeptide functionalized targeted mesoporous silica nanoparticles with doxorubicin exhibit enhanced apoptotic effect in breast and prostate cancer cells. Int. J. Nanomedicine, 2018, 13, 7669-7680.
[15]
Varshosaz, J.; Hassanzadeh, F.; Aliabadi, H.S.; Rabbani-Khoraskani, F.; Mirian, M.; Behdadfar, B. Targeted delivery of doxorubicin to breast cancer cells by magnetic LHRH chitosan bioconjugated nanoparticles. Int. J. Biol. Macromol., 2016, 93, 1192-1205.
[16]
Ekins, S.; Kim, R.B.; Leake, B.F.; Dantzig, A.H.; Schuetz, E.G.; Lan, L.; Yasuda, K.; Shepard, R.L.; Winter, M.A.; Schuetz, J.D.; Wikel, J.H.; Wrighton, S.A. Three-dimensional quantitative structure-activity relationships of inhibitors of P-glycoprotein. Mol. Pharmacol., 2002, 61(5), 964-973.
[17]
Maitra, R.; Halpin, P.A.; Karlson, K.H.; Page, R.L.; Paik, D.Y.; Leavitt, M.O.; Moyer, B.D.; Stanton, B.A.; Hamilton, J.W. Differential effects of mitomycin C and doxorubicin on P-glycoprotein expression. Biochem. J., 2001, 355(3), 617-624.
[18]
Matsumoto, S.; Yamamoto, A.; Takakura, Y.; Hashida, M.; Tanigawa, N.; Sezaki, H. Cellular interaction and in vitro antitumor activity of mitomycin C-dextran conjugate. Am. Ass. Cancer Res., 1986, 46(9), 4463-4468.
[19]
Jia, M.; Li, Y.; Yang, X.; Huang, Y.; Wu, H.; Huang, Y.; Lin, J.; Li, Y.; Hou, Z.; Zhang, Q. Development of both methotrexate and mitomycin C loaded PEGylated chitosan nanoparticles for targeted drug codelivery and synergistic anticancer effect. ACS Appl. Mater. Interfaces, 2014, 6(14), 11413-11423.
[20]
Nomura, T.; Saikawa, A.; Morita, S. Sakaeda (ne Kakutani), T.; Yamashita, F.; Honda, K.; Yoshinobu, T.; Hashida, M. Pharmacokinetic characteristics and therapeutic effects of mitomycin C-dextran conjugates after intratumoural injection. J. Control. Release, 1998, 52(3), 239-252.
[21]
Cheung, R.Y.; Ying, Y.; Rauth, A.M.; Marcon, N.; Wu, X.Y. Biodegradable dextran-based microspheres for delivery of anticancer drug mitomycin C. Biomaterials, 2005, 26(26), 5375-5385.
[22]
Cummings, J.; Allan, L.; Smyth, J.F. Encapsulation of mitomycin C in albumin microspheres markedly alters pharmacokinetics, drug quinone reduction in tumour tissue and antitumour activity: Implications for the drugs’ in vivo mechanism of action. Biochem. Pharmacol., 1994, 47(8), 1345-1356.
[23]
Ishiki, N.; Onishi, H.; Machida, Y. Evaluation of antitumor and toxic side effects of mitomycin C–estradiol conjugates. Int. J. Pharm., 2004, 279(1-2), 81-93.
[24]
Onishi, H.; Takahashi, H.; Yoshiyasu, M.; Machida, Y. Preparation and in vitro properties of N-succinylchitosan- or carboxymethylchitin-mitomycin C conjugate microparticles with specified size. Drug Dev. Ind. Pharm., 2001, 27(7), 659-667.
[25]
Xi-Xiao, Y.; Jan-Hai, C.; Shi-Ting, L.; Dan, G.; Xv-Xin, Z. Polybutylcyanoacrylate nanoparticles as a carrier for mitomycin C in rabbits bearing VX2-liver tumor. Regul. Toxicol. Pharmacol., 2006, 46(3), 211-217.
[26]
Sarısözen, C.; Aktaş, Y.; Mungan, A.; Bilensoy, E. Bioadhesive coated poly-epsilon-caprolactone nanoparticles loaded with Mitomycin C for the treatment of superficial bladder tumors. Eur. J. Pharm. Sci., 2007, 32(1), S36.
[27]
Li, Y.; Wu, H.; Jia, M.; Cui, F.; Lin, J.; Yang, X.; Wang, Y.; Dai, L.; Hou, Z. Therapeutic effect of folate-targeted and PEGylated phytosomes loaded with a mitomycin C–soybean phosphatidyhlcholine complex. Mol. Pharm., 2014, 11(9), 3017-3026.
[28]
Zhang, R.X.; Cai, P.; Zhang, T.; Chen, K.; Li, J.; Cheng, J.; Pang, K.S.; Adissu, H.A.; Rauth, A.M.; Wu, X.Y. Polymer-lipid hybrid nanoparticles synchronize pharmacokinetics of co-encapsulated doxorubicin-mitomycin C and enable their spatiotemporal co-delivery and local bioavailability in breast tumor. Nanomed Nanotechnol. Biol. Med, 2016, 12(5), 1279-1290.
[29]
Erdoğar, N.; İskit, A.B.; Mungan, N.A.; Bilensoy, E. Prolonged retention and in vivo evaluation of cationic nanoparticles loaded with Mitomycin C designed for intravesical chemotherapy of bladder tumours. J. Microencapsul., 2012, 29(6), 576-582.
[30]
Kranz, H.; Bodmeier, R. A novel in situ forming drug delivery system for controlled parenteral drug delivery. Int. J. Pharm., 2007, 332(1-2), 107-114.
[31]
Kakar, S.S.; Jin, H.; Hong, B.; Eaton, J.W.; Kang, K.A. LHRH receptor targeted therapy for breast cancer. Adv. Exp. Med. Biol., 2008, 614, 285-296.
[32]
Seitz, S.; Buchholz, S.; Schally, A.V.; Weber, F.; Klinkhammer-Schalke, M.; Inwald, E.C.; Perez, R.; Rick, F.G.; Szalontay, L.; Hohla, F.; Segerer, S.; Kwok, C.W.; Ortmann, O.; Engel, J.B. Triple negative breast cancers express receptors for LHRH and are potential therapeutic targets for cytotoxic LHRH-analogs, AEZS 108 and AEZS 125. BMC Cancer, 2014, 14, 847.
[33]
Song, S.; Qi, H.; Xu, J.; Guo, P.; Chen, F.; Li, F.; Yang, X.; Sheng, N.; Wu, Y.; Pan, W. Hyaluronan-based nanocarriers with CD44-overexpressed cancer cell targeting. Pharm. Res., 2014, 31(11), 2988-3005.
[34]
Taheri, A.; Dinarvand, R.; Ahadi, F.; Khorramizadeh, M.R.; Atyabi, F. The in vivo antitumor activity of LHRH targeted methotrexate-human serum albumin nanoparticles in 4T1 tumor-bearing Balb/c mice. Int. J. Pharm., 2012, 431(1-2), 183-189.
[35]
Jin, J.; Krishnamachary, B.; Mironchik, Y.; Kobayashi, H.; Bhujwalla, Z.M. Phototheranostics of CD44-positive cell populations in triple negative breast cancer. Sci. Rep., 2016, 6, 27871.
[36]
Hou, Z.; Wei, H.; Wang, Q.; Sun, Q.; Zhou, C.; Zhan, C.; Tang, X.; Zhang, Q. New method to prepare mitomycin C loaded PLA-nanoparticles with high drug entrapment efficiency. Nanoscale Res. Lett., 2009, 4(7), 732.
[37]
Li, Y.; Wu, H.; Yang, X.; Jia, M.; Li, Y.; Huang, Y.; Lin, J.; Wu, S.; Hou, Z. Mitomycin C-soybean phosphatidylcholine complex-loaded self-assembled PEG-lipid-PLA hybrid nanoparticles for targeted drug delivery and dual-controlled drug release. Mol. Pharm., 2014, 11(8), 2915-2927.
[38]
Hou, Z.; Sun, Q.; Wang, Q.; Han, J.; Wang, Y.; Zhang, Q. In vitro and in vivo evaluation of novel implantable collagen-chitosan-soybean phosphatidylcholine composite film for the sustained delivery of mitomycin C. Drug Dev. Res., 2009, 70(3), 206-213.
[39]
Shuhendler, A.J.; Cheung, R.Y.; Manias, J.; Connor, A.; Rauth, A.M.; Wu, X.Y. A novel doxorubicin-mitomycin C co-encapsulated nanoparticle formulation exhibits anti-cancer synergy in multidrug resistant human breast cancer cells. Breast Cancer Res. Treat., 2010, 119(2), 255-269.
[40]
Yi, Y.; Li, Y.; Wu, H.; Jia, M.; Yang, X.; Wei, H.; Lin, J.; Wu, S.; Huang, Y.; Hou, Z.; Xie, L. Single- Single-step assembly of polymer-lipid hybrid nanoparticles for mitomycin C delivery. Nanoscale Res. Lett., 2014, 9(1), 560.
[41]
Segal-Abramson, T.; Kitroser, H.; Levy, J.; Schally, A.V.; Sharoni, Y. Direct effects of luteinizing hormone-releasing hormone agonists and antagonists on MCF-7 mammary cancer cells. Proc. Natl. Acad. Sci. USA, 1992, 89(6), 2336-2339.