[1]
Choi, S.U.S.; Eastman, J.A. ASME international mechanical engineering congress and exposition.; San Francisco, CA. , 1995, pp. 12-17.
[2]
Bahiraei, M.; Hosseinalipour, S.M. Particle migration in nanofluids considering thermophoresis and its effect on convective heat transfer. Thermochim. Acta, 2013, 574, 47-54.
[3]
Yahya, S.M.; Anwer, S.F.; Sanghi, S. Variable expansivity: A key changing parameter in modeling of thermal conductivity of nanofluid. Nanosci. Nanotechnol. Lett., 2014, 6(10), 942-946.
[4]
Ansari, S.; Hussain, T.; Yahya, S.M.; Chaturvedi, P.; Sardar, N. Experimental investigation of viscosity of nanofluids containing oxide nanoparticles at varying shear rate. J. Nanofluids, 2018, 7(6), 1075-1080.
[5]
Ansari, S.; Yahya, S.M.; Umair, M.; Naim, M.S.; Bhardwaj, P.; Chaturvedi, P.; Khan, F.; Hussain, T. Experimental investigation of viscosity for Al2O3, CuO and TiO2 nanoparticles in deionised water at a fixed shear rate. Adv. Sci. Eng. Med., 2018, 10(3), 293-297.
[6]
Chaturvedi, P.; Yahya, S.M.; Hussain, T. Materials Science and Engineering. IOP Publishing, 2018, 377(1) 012154
[7]
Yahya, S.M.; Hussain, T.; Chaturvedi, P. The mirror: Mother of all symmetries in crystals. Adv. Sci. Eng. Med., 2018, 10(3), 298-303.
[8]
Wang, J.; Zeng, X.C. In: In: Nanoscale magnetic materials and applications; Springer, Boston, MA. , 2009; pp. 35-65.
[9]
Odenbach, S. Recent progress in magnetic fluid research. J. Phys., 2004, 16(32), R1135.
[10]
Ganguly, R.; Puri, I.K. Field-assisted self-assembly of superparamagnetic nanoparticles for biomedical, MEMS and BioMEMS applications. Adv. Appl. Mech., 2007, 41, 293-335.
[11]
Odenbach, S.; Thurm, S. In: In: Ferrofluids; Springer, Berlin, Heidelberg. 185-201., 2002.; pp.
[12]
Shliomis, M.I. In: In: Ferrofluids; Springer, Berlin, Heidelberg. 85-111., 2002; pp.
[13]
Kuzubov, A.O.; Ivanova, O.I. Magnetic liquids for heat exchange. J. Phys. III, 1994, 4(1), 1-6.
[14]
Aminfar, H.; Mohammadpourfard, M.; Kahnamouei, Y.N.J. A 3D numerical simulation of mixed convection of a magnetic nanofluid in the presence of non-uniform magnetic field in a vertical tube using two phase mixture model. Magnet. Magnet. Mater, 2011, 323(15), 1963-1972.
[15]
Aminfar, H.; Mohammadpourfard, M.; Mohseni, F.J. Experimental study on the effect of magnetic field on critical heat flux of ferrofluid flow boiling in a vertical annulus. Magnet. Magnet. Mater, 2012, 324(5), 830-842.
[16]
Aminfar, H.; Mohammadpourfard, M.; Zonouzi, S.A. Numerical study of the ferrofluid flow and heat transfer through a rectangular duct in the presence of a non-uniform transverse magnetic field. J. Magnet. Magnet. Mater., 2013, 327, 31-42.
[17]
Odenbach, S. Ed. Colloidal magnetic fluids: Basics, development
and application of ferrofluids; Springer. 763., 2009, p.
[18]
Webb, R.L. Principle of enhanced heat transfer; John Wiley &
Sons, New York. , 1994, pp. 332-340.
[19]
Kuzubov, A.O.; Ivanova, O.I. Magnetic liquids for heat exchange. J. Phys. III, 1994, 4(1), 1-6.
[20]
Vekas, L.; Bica, D.; Avdeev, M.V. Magnetic nanoparticles and concentrated magnetic nanofluids: Synthesis, properties and some applications. China Particuol, 2007, 5(1-2), 43-49.
[21]
Kolesnichenko, V.L. Magnetic nanoparticle-supported glutathione: a conceptually sustainable organocatalyst. Magnet. Nanopart, 2009, 1, 1837.
[22]
Lo, C.H.; Tsung, T.T.; Chen, L.C. Ni nano-magnetic fluid prepared by submerged arc nano synthesis system (SANSS). JSME Int. J. Ser. B Fluids Thermal. Eng., 2005, 48(4), 750-755.
[23]
Charles, S.W. In: In: Ferrofluids; Springer, Berlin, Heidelberg. , 2002; pp. 3-18.
[24]
Fu, H.L.; Gao, L. Theory for anisotropic thermal conductivity of magnetic nanofluids. Phys. Lett. A, 2011, 375(41), 3588-3592.
[25]
Fang, X.; Xuan, Y.; Li, Q. Anisotropic thermal conductivity of magnetic fluids. Prog. Nat. Sci., 2009, 19(2), 205-211.
[26]
Nkurikiyimfura, I.; Wang, Y.; Pan, Z. Effect of chain-like magnetite nanoparticle aggregates on thermal conductivity of magnetic nanofluid in magnetic field. Exper. Thermal. Fluid Sci., 2013, 44, 607-612.
[27]
Finlayson, B.A. Convective instability of ferromagnetic fluids. J. Fluid Mech., 1970, 40(4), 753-767.
[28]
Shahsavar, A.; Bahiraei, M. Experimental investigation and modeling of thermal conductivity and viscosity for non-Newtonian hybrid nanofluid containing coated CNT/Fe3O4 nanoparticles. Powder Technol., 2017, 318, 441-450.
[29]
Afrand, M.; Toghraie, D.; Sina, N. Experimental study on thermal conductivity of water-based Fe3O4 nanofluid: development of a new correlation and modeled by artificial neural network. Int. Commun. Heat Mass Transfer., 2016, 75, 262-269.
[30]
Harandi, S.S.; Karimipour, A.; Afrand, M.; Akbari, M.; D’Orazio, A. An experimental study on thermal conductivity of F-MWCNTs–Fe3O4/EG hybrid nanofluid: effects of temperature and concentration. Int. Commun. Heat Mass Transfer., 2016, 76, 171-177.
[31]
Sonawane, S.S.; Juwar, V. Optimization of conditions for an enhancement of thermal conductivity and minimization of viscosity of ethylene glycol based Fe3O4 nanofluid. Appl. Thermal. Eng., 2016, 109, 121-129.
[32]
Esfe, H.M.; Saedodin, S.; Sedighi, M. Predicting thermophysical properties and flow characteristics of nanofluids using intelligent methods: focusing on ANN methods. J. Curr. Res. Sci, 2013, 1(6), 605.
[33]
Sundar, L.S.; Singh, M.K.; Sousa, A.C. Investigation of thermal conductivity and viscosity of Fe3O4 nanofluid for heat transfer applications. Int. Commun. Heat Mass Transfer., 2013, 44, 7-14.
[34]
Wang, B.; Wang, B.; Wei, P.; Wang, X.; Lou, W. Controlled synthesis and size-dependent thermal conductivity of Fe3O4 magnetic nanofluids. Dalton Transac., 2012, 41(3), 896-899.
[35]
Abareshi, M.; Goharshadi, E.K.; Zebarjad, S.M.; Fadafan, H.K.; Youssefi, A. Fabrication, characterization and measurement of thermal conductivity of Fe3O4 nanofluids. J. Magnet. Magnet. Mater., 2010, 322(24), 3895-3901.
[36]
Hong, K.S.; Hong, T.K.; Yang, H.S. Thermal conductivity of Fe nanofluids depending on the cluster size of nanoparticles. Appl. Phys. Lett., 2006, 88(3) 031901
[37]
Amani, M.; Amani, P.; Kasaean, A.; Mahian, O.; Wongwises, S. Thermal conductivity measurement of spinel-type ferrite MnFe2O4 nanofluids in the presence of a uniform magnetic field. J. Mol. Liquids., 2017, 230, 121-128.
[38]
Karimi, A.; Afghahi, S.S.S.; Shariatmadar, H.; Ashjaee, M. Experimental investigation on thermal conductivity of MFe2O4 (M= Fe and Co) magnetic nanofluids under influence of magnetic field. Thermochim. Acta, 2014, 598, 59-67.
[39]
Krichler, M.; Odenbach, S. Thermal conductivity measurements on ferrofluids with special reference to measuring arrangement. J. Magnet. Magnet. Mater., 2013, 326, 85-90.
[40]
Parekh, K.; Lee, H.S. Experimental investigation of thermal conductivity of magnetic nanofluids. AIP Conf. Proc., 2012, 1447(1), 385-386.
[41]
Shima, P.D.; Philip, J. Tuning of thermal conductivity and rheology of nanofluids using an external stimulus. J. Phys. Chem. C, 2011, 115(41), 20097-20104.
[42]
Parekh, K.; Lee, H.S. Magnetic field induced enhancement in thermal conductivity of magnetite nanofluid. J. Appl. Phys., 2010, 107(9) 09A310
[43]
Li, Q.; Xuan, Y.; Wang, J. Experimental investigations on transport properties of magnetic fluids. Exper. Thermal. Fluid Sci., 2005, 30(2), 109-116.
[44]
Chiu, Y.P.; Chen, Y.F.; Yang, S.Y.; Chen, J.C.; Horng, H.E.; Yang, H.C.; Hong, C.Y. Specific heat of magnetic fluids under a modulated magnetic field. J. Appl. Phys., 2003, 93(4), 2079-2081.
[45]
Hayat, T.; Khan, M.I.; Waqas, M.; Alsaedi, A.; Farooq, M. Numerical simulation for melting heat transfer and radiation effects in stagnation point flow of carbon–water nanofluid. Comput. Methods Appl. Mech. Eng., 2017, 315, 1011-1024.
[46]
Sheikholeslami, M.; Rashidi, M.M.; Hayat, T.; Ganji, D.D. Free convection of magnetic nanofluid considering MFD viscosity effect. J. Mol. Liquids., 2016, 218, 393-399.
[47]
Mousavi, M. Advances in Computational Algorithms and Data Analysis; Springer, Dordrecht. , 2009, pp. 495-507.
[48]
Sheikholeslami, M.; Gorji-Bandpay, M.; Ganji, D.D. Magnetic field effects on natural convection around a horizontal circular cylinder inside a square enclosure filled with nanofluid. Int. Commun. Heat Mass Transfer., 2012, 39(7), 978-986.
[49]
Khanafer, K.; Vafai, K.; Lightstone, M. Buoyancy-driven heat transfer enhancement in a two-dimensional enclosure utilizing nanofluids. Int. J. Heat Mass Transfer., 2003, 46(19), 3639-3653.
[50]
Sheikholeslami, M.; Rokni, H.B. Nanofluid two phase model analysis in existence of induced magnetic field. Int. J. Heat Mass Transfer., 2017, 107, 288-299.
[51]
Sheikholeslami, M.; Ganji, D.D.; Rashidi, M.M. Magnetic field effect on unsteady nanofluid flow and heat transfer using Buongiorno model. J. Magnet. Magnet. Mater., 2016, 416, 164-173.
[52]
Sheikholeslami, M.; Rashidi, M.M.; Ganji, D.D. Numerical investigation of magnetic nanofluid forced convective heat transfer in existence of variable magnetic field using two phase model. J. Mol. Liquids., 2015, 212, 117-126.
[53]
Sheikholeslami, M.; Ganji, D.D.; Javed, M.Y.; Ellahi, R. Effect of thermal radiation on magnetohydrodynamics nanofluid flow and heat transfer by means of two phase model. J. Magnet. Magnet. Mater., 2015, 374, 36-43.
[54]
Sheikholeslami, M.; Abelman, S. Two-phase simulation of nanofluid flow and heat transfer in an annulus in the presence of an axial magnetic field. IEEE Transac. Nanotechnol., 2015, 14(3), 561-569.
[55]
Sheikholeslami, M.; Abelman, S.; Ganji, D.D. Numerical simulation of MHD nanofluid flow and heat transfer considering viscous dissipation. Int. J. Heat Mass Transfer., 2014, 79, 212-222.
[56]
Lian, W.; Xuan, Y.; Li, Q. Design method of automatic energy transport devices based on the thermomagnetic effect of magnetic fluids. Int. J. Heat Mass Transfer., 2009, 52(23-24), 5451-5458.
[57]
Zablotsky, D.; Mezulis, A.; Blums, E. Surface cooling based on the thermomagnetic convection: Numerical simulation and experiment. Int. J. Heat Mass Transfer., 2009, 52(23-24), 5302-5308.
[58]
Philip, J.; Shima, P.D.; Raj, B. Nanofluid with tunable thermal properties. Appl. Phys. Lett., 2008, 92(4) 043108
[59]
Ming, Z.; Zhongliang, L.; Guoyuan, M.; Shuiyuan, C. The experimental study on flat plate heat pipe of magnetic working fluid. Exper. Thermal. Fluid Sci., 2009, 33(7), 1100-1105.
[60]
Lee, Y.W.; Chang, T.L. Novel perturbations between magnetic nanofluid and the thermal fluidic system at heat dissipation. Microelectron. Eng., 2013, 111, 58-63.
[61]
Sharifi, I.; Shokrollahi, H.; Amiri, S. Ferrite-based magnetic nanofluids used in hyperthermia applications. J. Magnet. Magnet. Mater., 2012, 324(6), 903-915.