[3]
Sachs, J.; Malaney, P. The economic and social burden of malaria. Nature, 2002, 415, 680-685. [DOI: 10.1038/415680a].
[5]
Go, M.L. Novel antiplasmodial agents. Med. Res. Rev., 2003, 23(4), 456-487. [DOI: 10.1002/med.10040].
[8]
Cowman, A.F.; Healer, J.; Marapana, D.; Marsh, K. Malaria: Biology and Disease. Cell, 2016, 167, 610-624. [DOI: 10.1016/j.cell.2016.07.055]
[9]
Dunst, J.; Kamena, F.; Matuschewski, K. Cytokines and chemokines in cerebral malaria pathogenesis. Front. Cell. Infect. Microbiol., 2017, 7, 1-16. [doi: 10.3389/fcimb.2017.00324]
[10]
Rodrigues, T.; Moreira, R.; Lopes, F. NEW hope in the fight against malaria? Future Med. Chem., 2011, 3, 1-3. [DOI: 10.4155/fmc.10.274
[11]
Pink, R.; Hudson, A.; Mouriès, M-A.; Bendig, M. Opportunities and challenges in antiparasitic drug discovery. Nat. Rev. Drug Discov., 2005, 4, 727-740. [DOI: 10.1038/nrd1824
[12]
Kim, H.; Certa, U.; Döbeli, H.; Jakob, P.; Hol, W.G.J. Crystal structure of fructose-1,6-bisphosphate aldolase from the human malaria parasite Plasmodium falciparum. Biochemistry, 1998, 37, 4388-4396. [DOI: 10.1021/bi972233h
[13]
Jonckers, T.H.M.; Miert, S-v.; Cimanga, K.; Bailly, C.; Colson, P.; De Pauw-Gillet, M-C. Heuvel, H-v-d.; Claeys, M.; Lemiere, F.; Esmans, E.L.; Rozenski, J.; Quirijnen, L.; Maes, L.; Dommisse, R. Lemiere, G.L.F.; Vlietinck, A.; Pieters, L. Synthesis, cytotoxicity, and antiplasmodial and antitrypanosomal activity of new neocryptolepine derivatives. J. Med. Chem., 2002, 45, 3497-3508. [https://doi.org/10.1021/jm011102i
[14]
Zhang, Y.; Anderson, M.; Weisman, J.L.; Lu, M.; Choy, C.J.; Boyd, V.A.; Price, J.; Sigal, M.; Clark, J.; Connelly, M.; Zhu, F.; Guiguemde, W.A.; Jeffries, C.; Yang, L.; Lemoff, A.; Liou, A.P.; Webb, T.R.; DeRisi, J.L.; Guy, R.K. Evaluation of diarylureas for activity against Plasmodium falciparum. ACS Med. Chem. Lett., 2010, 1, 460-465. [DOI: 10.1021/ml100083c
[15]
Chaturvedi, D.; Goswami, A.; Saikia, P.P.; Barua, N.C.; Rao, P.G. Artemisinin and its derivatives: a novel class of anti-malarial and anti-cancer agents. Chem. Soc. Rev., 2010, 39, 435-454. [DOI: 10.1039/b816679j
[16]
Rosenthal, P.J. Antimalarial drug discovery: old and new approaches. J. Exp. Biol., 2003, 206, 3735-3744. [DOI: 10.1242/jeb.00589
[17]
Miller, L.H.; Ackerman, H.C.; Su, X-Z.; Wellems, T.E. Malaria biology and disease pathogenesis: insights for new treatments. Nat. Med., 2013, 19, 156-157. [DOI: 10.1038/nm.3073
[18]
Meshnick, S.R.; Dobson, M.J. The History of Antimalarial Drugs
In: Antimalarial Chemotherapy; P.J. Rosenthal (ed.); Humana
Press, Totowa, NJ, 2001, pp. 15-25. [DOI:10.1007/978-1-59259-
111-4_2]
[19]
Hussain, H.; Specht, S.; Sarite, S.R.; Saeftel, M. Hoerauf, A.; Schulz, B.; Krohn, K. A new class of phenazines with activity against a chloroquine resistant Plasmodium falciparum strain and antimicrobial activity. J. Med. Chem., 2011, 54, 4913-4917. [https://doi.org/10.1021/jm200302d
[20]
Ranson, H.; Jensen, B.; Wang, X.; Prapanthadara, L.; Hemingway, J.; Collins, F.H. Genetic mapping of two loci affecting DDT resistance in the malaria vector Anopheles gambiae. Insect Mol. Biol., 2000, 9, 499-507. [PMID: 11029668]
[21]
Greenwood, B.M.; Fidock, D.A.; Kyle, D.E.; Kappe, S.H.I.; Alonso, P.L.; Collins, F.H.; Duffy, P.E. Malaria: progress, perils, and prospects for eradication. J. Clin. Invest., 2008, 118, 1266-1276. [DOI: 10.1172/JCI33996
[22]
Wassmer, S.C.; Grau, G.E. Severe malaria: what’s new on the pathogenesis front? Int. J. Parasitol., 2017, 47, 145-152. [doi: 10.1016/j.ijpara.2016.08.002
[23]
Rodrigues, T.; Prudêncio, M.; Moreira, R.; Mota, M.M.; Lopes, F. Structural optimization of Quinolon-4(1H)-imines as dual-stage antimalarials: toward increased potency and metabolic stability. J. Med. Chem., 2012, 55, 995-1012. [https://doi.org/10.1021/jm4011466
[24]
Lacroix, R.; Mukabana, W.R.; Gouagna, L.C.; Koella, J.C. Malaria infection increases attractiveness of humans to mosquitoes. PLoS Biol., 2005, 3, e298. [DOI: 10.1371/journal.pbio.0030298
[25]
Ismail, H.M.; Barton, V.; Phanchana, M.; Charoensutthivarakul, S.; Wong, M.H.L.; Hemingway, J.; Biagini, G.A.; O’Neill, P.M.; Ward, S.A. Artemisinin activity-based probes identify multiple molecular targets within the asexual stage of the malaria parasites Plasmodium falciparum 3D7. Proc. Natl. Acad. Sci. USA, 2016, 113, 2080-2085. [DOI: 10.1073/pnas.1600459113
[26]
Delves, M.; Plouffe, D.; Scheurer, C.; Meister, S.; Wittlin, S.; Winzeler, E.A.; Sinden, R.E.; Leroy, D. The activities of current antimalarial drugs on the life cycle stages of Plasmodium: a comparative study with human and rodent parasites. PLoS Med., 2012, 9, e1001169. [DOI: 10.1371/journal.pmed.1001169
[27]
Dembele, L.; Franetich, J-F.; Lorthiois, A.; Gego, A.; Zeeman, A-M.; Kocken, C.H.M.; Le Grand, R.; Dereuddre-Bosquet, N.; Gemert, G-J-v.; Sauerwein, R.; Vaillant, J-C.; Hannoun, L.; Fuchter, M.J.; Diagana, T.T.; Malmquist, N.A.; Scherf, A.; Snounou, G.; Mazier, D. Persistence and activation of malaria hypnozoites in long-term primary hepatocyte cultures. Nat. Med., 2014, 20, 307-312. [DOI: 10.1038/nm.3461
[28]
Wiesner, J.; Ortmann, R.; Jomaa, H.; Schlitzer, M. New antimalarial drugs. Angew. Chem. Int. Ed. Engl., 2003, 42, 5274-5293. [DOI: 10.1002/anie.200200569
[29]
Greenwood, B.; Mutabingwa, T. Malaria in 2002. Nature, 2002, 415, 670-672. [DOI: 10.1038/415670a
[30]
Delepine, M. Joseph Pelletier and Joseph Caventou. J. Chem. Educ., 1951, 28(9), 454-461. [DOI: https://doi.org/10.1021/ed028p454
[31]
Achan, J.; Talisuna, A.O.; Erhart, A.; Yeka, A.; Tibenderana, J.K.; Baliraine, F.N.; Rosenthal, P.J.; D’Alessandro, U. Quinine, an old anti-malarial drug in a modern world: role in the treatment of malaria. Malar. J., 2011, 10(1), 144. [DOI: https://doi.org/10.1186/1475-2875-10-144
[33]
Krafts, K.; Hempelmann, E.; Skórska-Stania, A. From methylene blue to chloroquine: a brief review of the development of an antimalarial therapy. Parasitol. Res., 2012, 111(1), 1-6. [DOI: 10.1007/s00436-012-2886-x
[35]
Winstanley, P.A.; Ward, S.A.; Snow, R.W. Clinical status and implications of antimalarial drug resistance. Microbes Infect., 2002, 4, 157-164. [DOI: 10.1016/S1286-4579(01)01523-4
[36]
Bacon, P.; Spalton, D.J.; Smith, S.E. Blindness from quinine toxicity. Br. J. Ophthalmol., 1988, 72, 219-224. [DOI: 10.1136/bjo.72.3.219
[37]
Carvalho, L.H.; Krettli, A.U. Antimalarial Chemotherapy with natural products and chemically defined molecules. Mem. Inst. Oswaldo Cruz, 1991, 86, 181-184. [DOI: 10.1590/s0074-02761991000600041
[38]
Coatney, G.R. Pitfalls in a discovery: the chronicle of chloroquine. Am. J. Trop. Med. Hyg., 1963, 12, 121-128. [DOI: 10.4269/ajtmh.1963.12.121
[40]
Sullivan, Jr, D.J.; Gluzman, I.Y.; Russell, D.G.; Goldberg, D.E. On the molecular mechanism of chloroquine’s antimalarial action. Proc. Natl. Acad. Sci. USA, 1996, 93, 11865-11870. [DOI: 10.1 073/pnas.93.21.11865
[41]
Cheruku, S.R.; Maiti, S.; Dorn, A.; Scorneaux, B.; Bhattacharjee, A.K.; Ellis, W.Y.; Vennerstrom, J.L. Carbon Isosteres of the 4-Aminopyridine Substructure of Chloroquine: Effects on pKa, Hematin Binding, Inhibition of Hemozoin Formation, and Parasite Growth. J. Med. Chem., 2003, 46, 3166-3169. [DOI: https://doi.org/10.1021/jm030038x
[42]
Kalaria, P.N.; Karad, S.C.; Raval, D.K. A review on diverse heterocyclic compounds as the privileged scaffolds in antimalarial drug discovery. Eur. J. Med. Chem., 2018, 158, 917-936. [DOI: 10.1016/j.ejmech.2018.08.040
[43]
Baird, J.K. Resurgent malaria at the millennium: control strategies in crisis. Drugs, 2000, 59, 719-743. [DOI: 10.2165/00003495-200059040-00001
[44]
White, N.J. Drug resistance in malaria. Br. Med. Bull., 1998, 54, 703-715. [DOI: 10.1093/oxfordjournals.bmb.a011721
[45]
Augusto, O.; Weingrill, C.L.V.; Schreier, S.; Amemiya, H. Hydroxyl radical formation as a result of the interaction between primaquine and reduced pyridine nucleotides. Arch Biochem Biophys, 1986. 244, 147-155. [PMID: 3004336]
[46]
Fletcher, K.A.; Barton, P.F.; Kelly, J.A. Biochem. Pharmacol., 1988, 37, 2683-2690.
[48]
Fidock, D.A.; Rosenthal, P.J.; Croft, S.L.; Brun, R.; Nwaka, S. Antimalarial drug discovery: efficacy models for compound screening. Nat. Rev. Drug Discov., 2004, 3, 509-520. [DOI: 10.1038/nrd1416
[50]
Burgess, S.J.; Selzer, A.; Kelly, J.X.; Smilkstein, M.J.; Riscoe, M.K.; Peyton, D.H. A chloroquine-like molecule designed to reverse resistance in Plasmodium falciparum. J. Med. Chem., 2006, 49, 5623-5625. [DOI: 10.1021/jm060399n
[51]
Baro, N.K.; Callaghan, P.S.; Roepe, P.D. Function of resistance conferring Plasmodium falciparum chloroquine resistance transporter isoforms. Biochemistry, 2013, 52, 4242-4249. [DOI: 10.1021/bi400557x
[52]
Payne, D. Parasitol. Today (Regul. Ed.).1987, 3(8), 241-246.
[53]
Wellems, T.E.; Plowe, C.V. Chloroquine-resistant malaria. J. Infect. Dis., 2001, 184(6), 770-776. [DOI: 10.1086/322858
[54]
Qinghaosu Antimalarial Coordinating Research Group. Antimalaria
studies on Qinghaosu. Chin. Med. J. 1979, 92, 811-816.[PMID:
117984
[55]
Klayman, D.L. Qinghaosu (artemisinin): an antimalarial drug from China. Science, 1985, 228, 1049-1055. [DOI: 10.1126/science.3887571
[57]
Cooperative Research Group on Qinghaosu. Studies on new anti-malarial drug Qinghaosu (in Chinese). Yaoxue Tongbao, 1979, 14, 49.
[59]
Liu, W.; Liu, Y. Youyou Tu: significance of winning the 2015 nobel prize in physiology or medicine. Cardiovasc. Diagn. Ther., 2009, 6, 1-2. [DOI: 10.3978/j.issn.2223-3652.2015.12.11
[60]
Coordinating Group for Research on the Structure of Qing Hau.
K'o Hsueh T'ung Pao, 1977, 22, 142. Chem. Abstr.1977, 87,
98788g.
[62]
Liu, J-M.; Ni, M-Y.; Fan, J-F.; Tu, Y-Y.; Wu, Z-H.; Wu, Y-L.; Chou, W-S. Structure and reaction of arteannuin. Acta Chimi. Sin., 1979, 37, 129-143.
[64]
O’Neill, P.M.; Posner, G.H. A medicinal chemistry perspective on artemisinin and related endoperoxides. J. Med. Chem., 2004, 47, 2945-2964. [DOI: https://doi.org/10.1021/jm030571c
[65]
Posner, G.H.; Oh, C.H.; Wang, D.; Gerena, L.; Milhous, W.K.; Meshnick, S.R.; Asawamahasadka, W. Mechanism-based design, synthesis, and in vitro antimalarial testing of new 4-methylated trioxanes structurally related to artemisinin: the importance of a carbon-centered radical for antimalarial activity. J. Med. Chem., 1994, 37, 1256-1258. [DOI: https://doi.org/10.1021/jm00035a003
[66]
Woerdenbag, H.J.; Moskal, T.A.; Pras, N.; Malingré, T.M.; El-Feraly, F.S.; Kampinga, H.H.; Konings, A.W. Cytotoxicity of artemisinin-related endoperoxides to ehrlich ascites tumor cells. J. Nat. Prod., 1993, 56, 849-856. [DOI: https://doi.org/10.1021/np50096a007
[68]
Crespo, M.D.P.; Avery, T.D.; Hanssen, E.; Fox, E.; Robinson, T.V.; Valente, P.; Taylor, D.K.; Tilley, L. Artemisinin and a series of novel endoperoxide antimalarials exert early effects on digestive vacuole morphology. Antimicrob. Agents Chemother., 2008, 52, 98-109. [doi: 10.1128/AAC.00609-07
[69]
Yang, Q.C.; Shi, W.Z.; Li, R. Gan, J. Traditional Chinese Medicine (TCM) and Herbal Hepatotoxicity: RUCAM and the Role of Novel Diagnostic Biomarkers Such as MicroRNAs. J. Tradit. Chin. Med., 1982, 2, 99-103. [doi: 10.3390/medicines3030018
[70]
Mohanty, A.K.; Rath, B.K.; Mohanty, R.; Samal, A.K.; Mishra, K. Randomized control trial of quinine and artesunate in complicated malaria. Indian J. Pediatr., 2004, 71, 291-295. [DOI: https://doi.org/10.1007/BF02724090
[71]
Dondorp, A.; Nosten, F.; Stepniewska, K.; Day, N.; White, N. Artesunate versus quinine for treatment of severe falciparum malaria: a randomised trial. Lancet, 2005, 366, 717-725. [DOI: 10.1016/S0140-6736(05)67176-0
[72]
Kremsner, P.G.; Krishna, S. Antimalarial combinations. Lancet, 2004, 364, 285-294. [DOI: 10.1016/S0140-6736(04)16680-4
[73]
Karunajeewa, H.A.; Reeder, J.; Lorry, K.; Dadod, E.; Hamzah, J.; Page-Sharp, M.; Chiswell, G.M.; Ilett, K.F.; Davis, T.M.E. Efficacy of a novel sublingual spray formulation of artemether in african children with Plasmodium falciparum malaria. Antimicrob. Agents Chemother., 2006, 50, 968-974. [doi: 10.1128/AAC.00243-15
[74]
Davis, T.M.E.; Phuong, H.L.; Ilett, K.F.; Hung, N.C.; Batty, K.T.; Phuong, V.D.B.; Powell, S.M.; Thien, H.V.; Binh, T.Q. Interspecies allometric scaling of antimalarial drugs and potential application to pediatric dosing. Antimicrob. Agents Chemother., 2001, 45, 181-186. [doi: 10.1128/AAC.02538-14
[75]
Krishna, S.; Planche, T.; Agbenyega, T.; Woodrow, C.; Agranoff, D.; Bedu-Addo, G.; Owusu, A.K. Ofori; Appiah, J.A.; Ramanathan,
S; Mansor, S.M.; Navaratnam, V. Bioavailability and preliminary
clinical efficacy.of intrarectal artesenuateiin Ghanaian
children with moderate malaria. Antimicrob. Agents. Chemother.,2001, 45, 509-516. [DOI: 10.1128/AAC.45.2.509-516.2001
[76]
Adjuik, M.; Babiker, A.; Garner, P.; Olliaro, P.; Taylor, W.; White, N. Artesunate combinations for treatment of malaria: meta-analysis. Lancet, 2004, 363, 9-17. [DOI: 10.1016/s0140-6736(03)15162-8
[77]
Carrara, V.I.; Sirilak, S.; Thonglairuam, J.; Rojanawatsirivet, C.; Proux, S.; Gilbos, V.; Brockman, A.; Ashley, E.A.; McGready, R.; Krudsood, S.; Leemingsawat, S.; Looareesuwan, S.; Singhasivanon, P.; White, N.; Nosten, F. Deployment of early diagnosis and mefloquine-artesunate treatment of falciparum malaria in thailand: the tak malaria initiative. PLoS Med., 2006, 3, e183. [DOI: 10.1371/journal.pmed.0030183
[79]
Li, Q.; Xie, L.H.; Si, Y.; Wong, E.; Upadhyay, R.; Yanez, D.; Weina, P.J. Toxikokinetics and hydrolysis of artilinetein Plasmodium berghei-infected and uninfected rats. Int. J. Toxicol., 2005, 24, 241-250. [https://doi.org/10.1080/10915810591007201
[80]
Xie, L.H.; Johnson, T.O.; Weina, P.J.; Haeberle, A.; Upadhyay, R.; Wong, E.; Li, Q. Risk assessment and therapeutic indices of artesunate and artelinate in Plasmodium berghei-infected and uninfected rats. Int. J. Toxicol., 2005, 24, 251-264. [DOI: 10.1080/10915810591007229
[81]
Woodrow, C.J.; Haynes, R.K.; Krishna, S. Artemisinins. Postgrad. Med. J., 2005, 81, 71-78. [DOI: 10.1136/pgmj.2004.028399
[82]
Milhous, W.K.; Klayman, D.L.; Lambros, C. XI international
congress for tropical medicine and malaria, Calgary, Alberta, Canada.
1984.
[85]
Schmid, G.; Hofheinz, W. Total synthesis of qinghaosu. J. Am. Chem. Soc., 1983, 105, 624. [DOI: https://doi.org/10.1021/ja00341a054
[86]
Xu, X.X.; Zhu, J.; Huang, D.Z.; Zhou, W.S. Tetrahedron; Elsevier, 1986, Vol. 42, p. 819.
[87]
Avery, M.A.; Chong, W.K.M.; Jennings-White, C. Stereoselective total synthesis of (+)-artemisinin, the antimalarial constituent of Artemisia annua L. J. Am. Chem. Soc., 1992, 114, 974. [DOI: https://doi.org/10.1021/ja00029a028
[88]
Ravindranathan, T.; Anil Kumar, M.; Menon, R.B.; Hiremath, S.V. Stereoselective synthesis of artemisinin+. Tet. Lett., 1990, 31, 755. [DOI: https://doi.org/10.1016/S0040-4039(00)94621-5
[89]
Lansbury, P.T.; Nowak, D.M. An efficient synthesis of artemisinin and deoxyartemisinin. Tet. Lett., 1992, 33, 1029.
[90]
Zhou, W.S.; Xu, X.X. Total Synthesis of the Antimalarial Sesquiterpene Peroxide Qinghaosu and Yingzhaosu A. Acc. Chem. Res., 1994, 27(7), 211-216. [DOI: https://doi.org/10.1021/ar00043a005
[91]
Dondorp, A.M.; Nosten, F.; Yi, P.; Das, D.; Phyo, A.P.; Tarning, J.; Lwin, K.M.; Ariey, F.; Hanpithakpong, W.; Lee, S.J.; Ringwald, P.; Silamut, K.; Imwong, M.; Chotivanich, K.; Lim, P.; Herdman, T.; An, S.S.; Yeung, S.; Singhasivanon, P.; Day, N.P.J.; Lindegardh, N.; Socheat, D.; White, N.J. Artemisinin resistance in Plasmodium falciparum malaria. N. Engl. J. Med., 2009, 361, 455-467. [Doi: 10.1056/NEJMoa0808859
[92]
Fairhurst, R.M.; Nayyar, G.M.L.; Breman, J.G.; Hallett, R.; Vennerstrom, J.L.; Duong, S.; Ringwald, P.; Wellems, T.E.; Plowe, C.V.; Dondorp, A.M. Artemisinin-resistant malaria: research challenges, opportunities, and public health implications. Am. J. Trop. Med. Hyg., 2012, 87, 231-241. [DOI: doi: 10.4269/ajtmh.2012.12-0025
[93]
Lu, F.; Culleton, R.; Zhang, M.; Ramaprasad, A.; von Seidlein, L.; Zhou, H.; Zhu, G.; Tang, J.; Liu, Y.; Wang, W.; Cao, Y.; Xu, S.; Gu, Y.; Li, J.; Zhang, C.; Gao, Q.; Menard, D.; Pain, A.; Yang, H.; Zhang, Q.; Cao, J. Emergence of Indigenous Artemisinin-Resistant Plasmodium falciparum in Africa. N. Engl. J. Med., 2017, 376, 991-993. [DOI: 10.1056/NEJMc1612765
[94]
Dodoo, A.N.; Fogg, C.; Asiimwe, A.; Nartey, E.T.; Kodua, A.; Tenkorang, O.; Ofori-Adjei, D. Potential contribution of prescription practices to the emergence and spread of chloroquine resistance in south-west Nigeria: caution in the use of artemisinin combination therapy. Malar. J., 2009, 8, 1-8. [Doi: 10.1186/1475-2875-8-313
[96]
Duffy, P.E.; Mutabingwa, T.K. Artemisinin combination therapies. Lancet, 2006, 367, 2037-2039. [DOI:10.1016/S0140-6736(06)68900-9
[97]
Douglas, N.M.; Anstey, N.M.; Angus, B.J.; Nosten, F.; Price, R.N. Artemisinin combination therapy for vivax malaria. Lancet Infect. Dis., 2010, 10, 405-416. [DOI: 10.1016/S1473-3099(10)70079-7
[98]
Holmgren, G.; Hamrin, J.; Svard, J.; Martensson, A.; Gil, J.P.; Bjorkman, A. Selection of pfmdr1 mutations after amodiaquine monotherapy and amodiaquine plus artemisinin combination therapy in East Africa. Infect. Genet. Evol., 2007, 7, 562-569. [DOI: 10.1016/j.meegid.2007.03.005
[99]
Sinclair, D.; Zani, B.; Doregan, S.; Olliaro, P.; Garner, P. Artemisinin-based combination therapy for treating uncomplicated malaria. Cochrane Database Syst. Rev., 2009, 3, CD007483. [DOI: 10.1002/14651858.CD007483.pub2
[100]
Zani, B.; Gathu, M.; Doregan, S.; Olliaro, P.L.; Sinclair, D. Dihydroartemisinin-piperaquine for treating uncomplicated Plasmodium falciparum malaria. Cochrane Database Syst. Rev., 2014, 1, CD010927. [DOI: 10.1002/14651858.CD010927
[101]
Bathurst, I.; Hentschel, C. Medicines for Malaria Venture: sustaining antimalarial drug development. Trends Parasitol., 2006, 22, 301-307. PMID: 16757213[ DOI: 10.1016/j.pt.2006.05.011]
[105]
Baker, J.K.; McChesney, J.D.; Chi, H.T. Decomposition of arteether in simulated stomach acid yielding compounds retaining antimalarial activity. Pharm. Res., 1993, 10, 662-666. [PMID: 8321829][DOI: 10.4269/ajtmh.2009.08-0326]
[106]
Brewer, T.G.; Peggins, J.O.; Grate, S.J.; Petras, J.M.; Levine, B.S.; Weina, P.J.; Swearengen, J.; Heiffer, M.H.; Schuster, B.G. Neurotoxicity in animals due to arteether and artemether. Trans. R. Soc. Trop. Med. Hyg., 1994, 88, 33-36. [PMID: 8053022] [DOI: 10.1016/0035-9203(94)90469-3]
[108]
Navaratnam, V.; Mansor, S.M.; Sit, N-W.; Grace, J.; Li, Q. Pharmacokinetics of artemisinin-type compounds. Clin. Pharmacokinet., 2000, 39, 255-270. [PMID: 11069212] [DOI: 10.2165/ 00003088-200039040-00002]
[109]
Genovese, R.F.; Newman, D.B.; Brewer, T.G. Behavioral and neural toxicity of the artemisinin antimalarial, arteether, but not artesunate and artelinate, in rats. Pharmacol. Biochem. Behav., 2000, 67, 37-44. [PMID: 11113482]
[110]
Nontprasert, A.; Pukrittayakamee, S.; Nosten-Bertrand, M.; Vanijanonta, S.; White, N.J. Prolongation of the QTc interval in African children treated for falciparum malaria. Am. J. Trop. Med. Hyg., 2000, 62, 409-412. [PMID: 9790416] [DOI: 10.4269/ajtmh.1998.59.503]
[111]
Schmuck, G.; Roehrdanz, E.; Haynes, R.K.; Kahl, R. Neurotoxic Mode of Action of Artemisinin. Antimicrob. Agents Chemother., 2002, 46, 821-827. [DOI: 10.1128/AAC.46.3.821-827.2002
[112]
Lefevre, G.; Carpenter, P.; Souppart, C.; Schmidli, H.; McClean, M.; Stypinski, D. Pharmacokinetics and electrocardiographic pharmacodynamics of artemether-lumefantrine (Riamet) with concomitant administration of ketoconazole in healthy subjects. Br. J. Clin. Pharmacol., 2002, 54, 485-492. [PMID: 12445027] [PMCID: PMC1874456] [DOI: 10.1046/j.1365-2125.2002.01696.x]
[113]
Davis, T.M.E.; Binh, T.Q.; Ilett, K.F.; Batty, K.T.; Phuöng, H.L.; Chiswell, G.M.; Phuöng, V.D.B.; Agus, C. Comparative in vitro susceptibilities and bactericidal activities of investigational fluoroquinolone ABT-492 and other antimicrobial agents against human mycoplasmas and ureaplasmas. Antimicrob. Agents Chemother., 2003, 47, 368-370. [DOI: 10.1128/aac.47.12.3973-3975.2003
[114]
Thuy-Nhien, N.; Tuyen, N.K.; Tong, N.T.; Vy, N.T.; Thanh, N.V.; Van, H.T.; Huong-Thu, P.; Quang, H.H.; Boni, M.F.; Dolecek, C.; Farrar, J.; Thwaites, G.E.; Miotto, O.; White, N.J.; Hien, T.T. K13 Propeller Mutations in Plasmodium falciparum Populations in Regions of Malaria Endemicity in Vietnam from 2009 to 2016. Antimicrob. Agents Chemother., 2017, 61, e01578-e16. [DOI: 10.1128/AAC.01578-16
[115]
White, N.J.; Pukrittayakamee, S.; Hien, T.T.; Faiz, M.A.; Mokuolu, O.A.; Dondorp, A.M. Malaria. Lancet, 2014, 383, 723-735. [DOI: 10.1016/S0140-6736(13)60024-0
[116]
Itokawa, H.; Tachi, Y.; Kamano, Y.; Iitaka, Y. Structure of gilvanol, a new triterpene isolated from Quercus gilva Blume. Chem. Pharm. Bull., 1978, 26, 331-333. [DOI: https://doi.org/10.1248/cpb.26.331
[117]
Ageta, H.; Shiojima, K.; Kamaya, R.; Masuda, K. Fern constituent: Naturally occurring adian-5-ene ozonide in the leaves of Adiantum monochlamys and Oleandra wallichii. Tetrahedron Lett., 1978, 19(10), 899-900. [DOI:10.1016/S0040-4039(01)91430-3
[118]
Rücker, G.; Manns, D.; Schenkel, E.P.; Hartmann, R.; Heinzmann, B.M. A Triterpene Ozonide from Senecio Selloi. Arch.Pharm. Med. Chem., 2003, 336, 205-207. [DOI:https://doi.org/10.1002/ardp.200300740
[119]
Barbosa, L.C.A.; Cutler, D.; Mann, J.; Kirby, G.C.; Warhurst, D.C. Synthesis of some stable ozonides with anti-malarial activity. J.Chem. Soc. Perkin Trans. 1, 1992, 3251-3252. [DOI:10.1039/P19920003251
[120]
Barbosa, L.C.A.; Cutler, D.; Mann, J.; Crabbe, M.J.; Kirby, G.C.; Warhurst, D.C. The design, synthesis and biological evaluation of stable ozonides with antimalarial activity. J. Chem. Soc., Perkin Trans. 1, 1996, 0, 1101-1105. [DOI:10.1039/P19960001101]
[121]
Griesbaum, K.; Ovez, B.; Huh, T.S.; Dong, Y. Liebigs Ann., 1995, 8, 1571-1574.
[122]
Tang, Y.; Dong, Y.; Karle, J.M.; DiTusa, C.A.; Vennerstrom, J.L. Synthesis of tetrasubstituted ozonides by the griesbaum coozonolysis reaction: diastereoselectivity and functional group transformations by post-ozonolysis reactions. J. Org. Chem., 2004, 69, 6470-6473. [DOI: https://doi.org/10.1021/jo040171
[123]
Vennerstrom, J.L.; Barnes, S.A.; Brun, R.; Charman, S.A.; Chiu, F.C.K.; Chollet, J.; Dong, Y.; Dorn, A.; Hunziker, D.; Matile, H.; McIntosh, K.; Padmanilayam, M.; Tomas, J.S.; Scheurer, C.; Scorneaux, B.; Tang, Y.; Urwyler, H.; Wittlin, S.; Charman, W.N. Identification of an antimalarial synthetic trioxolane drug development candidate. Nature, 2004, 430, 900-904. [DOI: 10.1038/nature02779
[124]
Dong, Y.; Chollet, J.; Matile, H.; Charman, S.A.; Chiu, F.C.K.; Charman, W.N.; Scorneaux, B.; Urwyler, H.; Tomas, J.S.; Scheurer, C.; Snyder, C.; Dorn, A.; Wang, X.; Karle, J.M.; Tang, Y.; Wittlin, S.; Brun, R.; Vennerstrom, J.L. Spiro and Dispiro-1,2,4-trioxolanes as Antimalarial Peroxides: Charting a Workable Structure−Activity Relationship Using Simple Prototypes. J. Med. Chem., 2005, 48, 4953-4961. [DOI: https://doi.org/10.1021/jm049040u
[125]
Tang, Y.; Dong, Y.; Wang, X.; Sriraghavan, K.; Wood, J.K.; Vennerstrom, J.L. Dispiro-1,2,4-trioxane Analogues of a Prototype Dispiro-1,2,4-trioxolane: Mechanistic Comparators for Artemisinin in the Context of Reaction Pathways with Iron(II). J. Org. Chem., 2005, 70, 5103-5110. [DOI: https://doi.org/10.1021/jo050385+
[126]
Padmanilayam, M.; Scorneaux, B.; Dong, Y.; Chollet, J.; Matile, H.; Charman, S.A.; Creek, D.J.; Charman, W.N.; Tomas, J.S.; Scheurer, C.; Wittlin, S.; Brun, R.; Vennerstrom, J.L. Antimalarial activity of N-alkyl amine, carboxamide, sulfonamide, and urea derivatives of a dispiro-1,2,4-trioxolane piperidine. Bioorg. Med. Chem. Lett., 2006, 16, 5542-5545. [DOI: 10.1016/j.bmcl.2006. 08.046
[127]
Dong, Y.; Tang, Y.; Chollet, J.; Matile, H.; Wittlin, S.; Charman, S.A.; Charman, W.N.; Tomas, J.S.; Scheurer, C.; Snyder, C.; Scorneaux, B.; Bajpai, S.; Alexander, S.A.; Wang, X.; Padmanilayam, M.; Cheruku, S.R.; Brun, R.; Vennerstrom, J.L. Effect of functional group polarity on the antimalarial activity of spiro and dispiro-1,2,4-trioxolanes. Bioorg. Med. Chem., 2006, 14, 6368-6382. [DOI: 10.1016/j.bmc.2006.05.041
[128]
Tang, Y.; Dong, Y.; Wittlin, S.; Charman, S.A.; Chollet, J.; Chiu, F.C.K.; Charman, W.N.; Matile, H.; Urwyler, H.; Dorn, A.; Bajpai, S.; Wang, X.; Padmanilayam, M.; Karle, J.M.; Brun, R.; Vennerstrom, J.L. Weak base dispiro-1,2,4-trioxolanes: Potent antimalarial ozonides. Bioorg. Med. Chem. Lett., 2007, 17, 1260-1265. [DOI: 10.1016/j.bmcl.2006.12.007
[129]
Creek, D.J.; Charman, W.N.; Chiu, F.C.K.; Prankerd, R.J.; McCullough, K.; Dong, Y.; Vennerstrom, J.L.; Charman, S.A. J. Pharm. Sci., 2007, 96, 2945-2056.
[130]
Kaiser, M.; Wittlin, S.; Nehrbass-Stuedli, A.; Dong, Y.; Wang, X.; Hemphill, A.; Matile, H.; Brun, R.; Vennerstrom, J.L. Peroxide Bond-Dependent Antiplasmodial Specificity of Artemisinin and OZ277 (RBx11160). Antimicrob. Agents Chemother., 2007, 51, 2991-2993. [doi:10.1128/AAC.00225-07
[131]
Creek, D.J.; Chalmers, D.K.; Charman, W.N.; Duke, B.J. Modeling the binding modes of Kv1.5 potassium channel and blockers. J. Mol. Graph. Model., 2008, 27, 394-400. [DOI: 10.1016/j.jmgm.2008.04.002
[132]
Zhou, L.; Alker, A.; Ruf, A.; Wang, X.; Chiu, F.C.; Morizzi, J.; Charman, S.A.; Charman, W.N.; Scheurer, C.; Wittlin, S.; Dong, Y.; Hunziker, D.; Vennerstrom, J.L. Characterization of the two major CYP450 metabolites of ozonide (1,2,4-trioxolane) OZ277. Bioorg. Med. Chem. Lett., 2008, 18(5), 1555-1558. [DOI: https://doi.org/10.1016/j.bmcl.2008.01.087
[133]
Creek, D.J.; Charman, W.N.; Chiu, F.C.K.; Prankerd, R.J.; Dong, Y.; Vennerstrom, J.L.; Charman, S.A. Relationship between Antimalarial Activity and Heme Alkylation for Spiro- and Dispiro-1,2,4-Trioxolane Antimalarials. Antimicrob. Agents Chemother., 2008, 52, 1291-1296. [DOI: 10.1128/AAC.01033-07
[134]
Dong, Y.; Wittlin, S.; Sriraghavan, K.; Chollet, J.; Charman, S.A.; Charman, W.N.; Scheurer, C.; Urwyler, H.; Tomas, J.S.; Snyder, C.; Creek, D.J.; Morizzi, J.; Koltun, M.; Matile, H.; Wang, X.; Padmanilayam, M.; Tang, Y.; Dorn, A.; Brun, R.; Vennerstrom, J.L. The Structure−Activity Relationship of the Antimalarial Ozonide Arterolane (OZ277). J. Med. Chem., 2010, 53, 481-491. [DOI: https://doi.org/10.1021/jm901473s
[135]
Tang, Y.; Wittlin, S.; Charman, S.A.; Chollet, J.; Chiu, F.C.K.; Morizzi, J.; Johnson, L.M.; Tomas, J.S.; Scheurer, C.; Snyder, C.; Zhou, L.; Dong, Y.; Charman, W.N.; Matile, H.; Urwyler, H.; Dorn, A.; Vennerstrom, J.L. The comparative antimalarial properties of weak base and neutral synthetic ozonides. Bioorg. Med. Chem. Lett., 2010, 20, 563-566. [DOI: https://doi.org/10.1016/j.bmcl.2009.11.088
[136]
Valecha, N.; Looreesuwan, S.; Martensson, A.; Abdulla, S.M.; Krudsood, S.; Tanpukdee, N.; Mohnty, S.; Mishra, S.K.; Tyagi, P.K.; Sharma, S.K.; Moehrle, J.; Gautam, A.; Roy, A.; Paliwal, J.K.; Kotbari, M.; Saha, N.; Dash, A.P.; Björkman, A. Arterolane, a New Synthetic Trioxolane for Treatment of Uncomplicated Plasmodium falciparum Malaria: A Phase II, Multicenter, Randomized, Dose-Finding Clinical Trial. Clin. Infect. Dis., 2010, 51, 684-691. [DOI: https://doi.org/10.1086/655831
[137]
Charman, S.A.; Arbe-Barnes, S.; Bathurst, I.C.; Brun, R.; Campbell, M.; Charman, W.N.; Chiu, F.C.K.; Chollet, J.; Craft, J.C.; Creek, D.J.; Dong, Y.; Matile, H.; Maurer, M.; Morizzi, J.; Nguyen, T.; Papastogiannidis, P.; Scheurer, C.; Shackleford, D.M.; Sriraghavan, K.; Stingelin, L.; Tang, Y.; Urwyler, H.; Wang, X.; White, K.L.; Wittlin, S.; Zhou, L.; Vennerstrom, J.L. Synthetic ozonide drug candidate OZ439 offers new hope for a single-dose cure of uncomplicated malaria. Proc. Natl. Acad. Sci. USA, 2011, 108, 4400-4405. [DOI: https://doi.org/10.1073/pnas.1015762108
[138]
Yang, T.; Xie, S.C.; Cao, P.; Giannangelo, C.; McCaw, J.; Creek, D.J.; Charman, S.A.; Klonis, N.; Tilley, L. Comparison of the exposure time dependence of the activities of synthetic ozonide antimalarials and dihydroartemisinin against K13 wild-type and mutant plasmodium falciparum strains. Antimicrob. Agents Chemother., 2016, 60(8), 4501-4510. [DOI: 10.1128/AAC.00574-16
[139]
Blank, B.R.; Gut, J.; Rosenthal, P.J.; Renslo, A.R. Enantioselective synthesis and in vivo evaluation of regioisomeric analogues of the antimalarial arterolane. J. Med. Chem., 2017, 60, 6400-6407. [DOI: DOI: 10.1021/acs.jmedchem.7b00699
[140]
Dong, Y.; Wang, X.; Kamaraj, S.; Bulbule, V.J.; Chiu, F.C.K.; Chollet, J.; Manickam, D.; Hein, C.D.; Papastogiannidis, P.; Morizzi, J.; Shackleford, D.M.; Barker, H.; Ryan, E.; Scheurer, C.; Tang, Y.; Zhao, Q.; Zhou, L.; White, K.L.; Urwyler, H.; Charman, W.N.; Matile, H.; Wittlin, S.; Charman, S.A.; Vennerstrom, J.L. Structure–activity relationship of the antimalarial ozonide artefenomel (OZ439). J. Med. Chem., 2017, 60(7), 2654-2668. [DOI: https://doi.org/10.1021/acs.jmedchem.6b01586
[141]
Kim, H.S.; Hammill, J.T.; Guy, R.K. Seeking the elusive long-acting ozonide: discovery of artefenomel (OZ439). J. Med. Chem., 2017, 60, 2651-2653. [DOI: https://doi.org/10.1021/acs.jmedchem.7b00299
[142]
Giannangelo, C.; Stingelin, L.; Yang, T.; Tilley, L.; Charman, S.A.; Creek, D.J. Parasite-mediated degradation of synthetic ozonide antimalarials impacts in vitro antimalarial activity. Antimicrob. Agents Chemother., 2018, 62(3), e01566-e17. [doi: 10.1128/AAC.01566-17
[143]
Chaudhary, S.; Sharma, V.; Jaiswal, P.K.; Gaikwad, A.N.; Sinha, S.K.; Puri, S.K.; Sharon, A.; Maulik, P.R.; Chaturvedi, V. Stable tricyclic antitubercular ozonides derived from artemisinin. Org. Lett., 2015, 17(20), 4948-4951. [DOI: https://doi.org/10.1021/acs.orglett.5b02296
[144]
(a)Peters, W. Chemotherapy and drug resistance in malaria; Academic Press: London, 1970, pp. 64-136.
(b)Singh, C.; Chaudhary, S.; Puri, S.K. New orally active derivatives of artemisinin with high efficacy against multidrug-resistant malaria in mice. J. Med. Chem., 2006, 49, 7227-7233. [DOI: https://doi.org/10.1021/jm060826x
[145]
Chaudhary, S.; Puri, S.K.; Singh, C. Orally active arteminisin derivatives. Med. Chem. Res., 2004, 12(6/7), 362.
[146]
Singh, C.; Chaudhary, S.; Puri, S.K. Orally active esters of dihydroartemisinin: Synthesis and antimalarial activity against multidrug-resistant Plasmodium yoelii in mice. Bioorg. Med. Chem. Lett., 2008, 18, 1436-1441. [doi: 10.1016/j.bmcl.2007.12.074
[147]
Singh, C.; Chaudhary, S.; Puri, S.K. Indian Patent, 2010, Patent
No. A 20100326 (IN2004DE00209).
[148]
Singh, C.; Chaudhary, S.; Puri, S.K. Indian Patent, 2012, Patent
No.253045A1 20120622 (IN2006DE00391).
[149]
Singh, C.; Kanchan, R.; Chaudhary, S.; Puri, S.K. Singh, C.; Kanchan, R.; Chaudhary, S.; Puri, S. K. Linker-Based Hemisuccinate Derivatives of Artemisinin: Synthesis and antimalarial assessment against multidrug-resistant plasmodium yoelii nigeriensis in mice. J. Med. Chem., 2012, 55(3), 1117-1126. [DOI: https://doi.org/10.1021/jm2010699
[151]
Chaudhary, S.; Naikade, N.K.; Tiwari, M.K.; Yadav, L.; Shyamlal, B.R.K.; Puri, S.K. New orally active diphenylmethyl-based ester analogues of dihydroartemisinin: Synthesis and antimalarial assessment against multidrug-resistant Plasmodium yoelii nigeriensis in mice. Bioorg. Med. Chem. Lett., 2016, 26(6), 1536-1541. [ doi: 10.1016/j.bmcl.2016.02.019
[152]
Terent’ev, A.O.; Yaremenko, I.A.; Glinushkin, A.P.; Nikishin, G.I. Synthesis of peroxides from β,δ-triketones under heterogeneous conditions. Russ. J. Org. Chem., 2015, 51, 1681-1687. [DOI: 10.1134/S1070428015120027
[153]
Yaremenko, I.A.; Gomes, G.P.; Radulov, P.S.; Belyakova, Y.Y.; Vilikotskiy, A.E.; Vil’, V.A.; Korlyukov, A.A.; Nikishin, G.I.; Alabugin, I.V.; Terent’ev, A.O. Ozone-Free Synthesis of Ozonides: Assembling Bicyclic Structures from 1,5-Diketones and Hydrogen Peroxide. J. Org. Chem., 2018, 83, 4402-4426. [https://doi.org/10.1021/acs.joc.8b00130
[154]
Baumgärtner, F.; Jourdan, J.; Scheurer, C.; Blasco, B.; Campo, B.; Mäser, P.; Wittlin, S. In vitro activity of anti-malarial ozonides against an artemisinin-resistant isolate. Malar. J., 2017, 16, 45. [DOI: 10.1186/s12936-017-1696-0
[155]
Pearce, A.N.; Kaiser, M.; Copp, B.R. Synthesis and antimalarial evaluation of artesunate-polyamine and trioxolane-polyamine conjugates. Eur. J. Med. Chem., 2017, 140, 595-603. [DOI: 10.1016/j.ejmech.2017.09.040
[156]
Yamansarov, E.Y.; Kazakov, D.V.; Medvedeva, N.I.; Khusnutdinova, E.F.; Kazakova, O.B.; Legostaeva, Y.V.; Ishmuratova, G.Y.; Huongc, M.L.; Ha, T.T.H.; Huongc, D.T.; Suponitsky, K.Y. Synthesis and antimalarial activity of 3′-trifluoromethylated 1,2,4-trioxolanes and 1,2,4,5-tetraoxane based on deoxycholic acid. Steroids, 2018, 129, 17-23. [https://doi.org/10.1016/j.steroids.2017.11.008
[157]
Lobo, L.; Cabral, L.I.L.; Sena, M.I.; Guerreiro, B.; Rodrigues, A.S.; Neto, V.F.A.; Cristiano, M.L.S.; Nogueira, F. New endoperoxides highly active in vivo and in vitro against artemisinin-resistant Plasmodium falciparum. Malar. J., 2018, 17(1), 145. [DOI: 10.1186/s12936-018-2281-x
[158]
Coghi, P.; Yaremenko, I.A.; Prommana, P.; Radulov, P.S.; Syroeshkin, M.A.; Wu, Y.J.; Gao, J.Y.; Martinez, F.M.G.; Mok, S.; Wong, V.K.W.; Uthaipibull, C.; Terent’ev, A.O. ChemMedChem, 2018, 13(9), 902-908. [DOI:10.1002/cmdc.201700804