Generic placeholder image

Current Nanoscience

Editor-in-Chief

ISSN (Print): 1573-4137
ISSN (Online): 1875-6786

Review Article

Extracellular Vesicles: A New Nano Tool for the Treatment of Inflammatory Bowel Diseases

Author(s): Nitin Tandra, Peipei Wu, Xinyuan Hu, Fei Mao, Wenrong Xu and Hui Qian*

Volume 15, Issue 6, 2019

Page: [589 - 595] Pages: 7

DOI: 10.2174/1573413715666190411141126

Price: $65

Abstract

The intestinal tract is a complex and important physiological and immunological organ. Intestinal tract homeostasis requires a series of coordinated interactions involving gut microbiota, the crypt intestinal stem cells (ISC) and the surrounding niche, including the intestinal epithelial cells, endothelial cells, dendritic cells, and macrophages. The destruction of intestinal homeostasis leads to autoimmune diseases, such as inflammatory bowel disease (IBD). IBD is a non-specific, and remittent- relapsing inflammatory disorder of the gastrointestinal tract. There is no effective method to keep patients in remission for a long term. It has been reported that extracellular vesicles (EVs) exert immune activation and immunosuppressive effects in the pathogenesis of IBD. In order to explore new therapeutic strategies for IBD, in this review, we summarize the observations on the immune properties and functions of EVs in intestinal mucosal immunity.

Keywords: Inflammatory bowel disease, extracellular vesicles, mesenchymal stem cells, dendritic cells, macrophages, gut microbiota.

Graphical Abstract

[1]
Marquez, L.; Shen, C.; Cleynen, I.; De Hertogh, G.; Van Steen, K.; Machiels, K.; Perrier, C.; Ballet, V.; Organe, S.; Ferrante, M.; Henckaerts, L.; Galicia, G.; Rutgeerts, P.; Ceuppens, J.L.; Vermeire, S. Effects of haptoglobin polymorphisms and deficiency on susceptibility to inflammatory bowel disease and on severity of murine colitis. Gut, 2012, 61, 528-534.
[2]
Axelrad, J.E.; Lichtiger, S.; Yajnik, V. Inflammatory bowel disease and cancer: The role of inflammation, immunosuppression, and cancer treatment. World J. Gastroenterol., 2016, 22, 4794-4801.
[3]
Taleban, S.; Elquza, E.; Gower-Rousseau, C.; Peyrin-Biroulet, L. Cancer and inflammatory bowel disease in the elderly. Dig. Liver Dis., 2016, 48, 1105-1111.
[4]
Francescone, R.; Hou, V.; Grivennikov, S.I. Cytokines, IBD, and colitis-associated cancer. Inflamm. Bowel Dis., 2015, 21, 409-418.
[5]
Kim, E.R.; Chang, D.K. Colorectal cancer in inflammatory bowel disease: The risk, pathogenesis, prevention and diagnosis. World J. Gastroenterol., 2014, 20, 9872-9881.
[6]
Kaplan, G.G. The global burden of IBD: From 2015 to 2025. Nat. Rev. Gastroenterol. Hepatol., 2015, 12, 720-727.
[7]
Kappelman, M.D.; Rifas-Shiman, S.L.; Porter, C.Q.; Ollendorf, D.A.; Sandler, R.S.; Galanko, J.A.; Finkelstein, J.A. Direct health care costs of Crohn’s disease and ulcerative colitis in US children and adults. Gastroenterology, 2008, 135, 1907-1913.
[8]
Dyson, J.K.; Rutter, M.D. Colorectal cancer in inflammatory bowel disease: What is the real magnitude of the risk? World J. Gastroenterol., 2012, 18, 3839-3848.
[9]
Bouma, G.; Strober, W. The immunological and genetic basis of inflammatory bowel disease. Nat. Rev. Immunol., 2003, 3, 521-533.
[10]
Strober, W.; Fuss, I.; Mannon, P. The fundamental basis of inflammatory bowel disease. J. Clin. Invest., 2007, 117, 514-521.
[11]
Peyrin-Biroulet, L.; Demarest, S.; Nirula, A. Bispecific antibodies: The next generation of targeted inflammatory bowel disease therapies. Autoimmun. Rev., 2018, 18, 123-128.
[12]
Macaluso, F.S.; Orlando, A.; Cottone, M. Anti-interleukin-12 and anti-interleukin-23 agents in Crohn’s disease. Expert Opin. Biol. Ther., 2019, 19, 89-98.
[13]
Uranga, J.A.; Lopez-Miranda, V.; Lombo, F.; Abalo, R. Food, nutrients and nutraceuticals affecting the course of inflammatory bowel disease. Pharmacol. Rep., 2016, 68, 816-826.
[14]
Conklin, L.S.; Hanley, P.J.; Galipeau, J.; Barrett, J.; Bollard, C.M. Intravenous mesenchymal stromal cell therapy for inflammatory bowel disease: Lessons from the acute graft versus host disease experience. Cytotherapy, 2017, 19, 655-667.
[15]
Ibraheim, H.; Giacomini, C.; Kassam, Z.; Dazzi, F.; Powell, N. Advances in mesenchymal stromal cell therapy in the management of Crohn’s disease. Expert Rev. Gastroenterol. Hepatol., 2018, 12, 141-153.
[16]
Verstockt, B.; Ferrante, M.; Vermeire, S.; Van Assche, G. New treatment options for inflammatory bowel diseases. J. Gastroenterol., 2018, 53, 585-590.
[17]
Salem, G.A.; Selby, G.B. Stem cell transplant in inflammatory bowel disease: A promising modality of treatment for a complicated disease course. Stem Cell Investig., 2017, 4, 95.
[18]
Mount, N.M.; Ward, S.J.; Kefalas, P.; Hyllner, J. Cell-based therapy technology classifications and translational challenges. Philos. Trans. R. Soc. Lond. B Biol. Sci., 2015, 370(1680), 20150017.
[19]
Trounson, A.; McDonald, C. Stem cell therapies in clinical trials: Progress and challenges. Cell Stem Cell, 2015, 17, 11-22.
[20]
Zhang, B.; Wang, M.; Gong, A.; Zhang, X.; Wu, X.; Zhu, Y.; Shi, H.; Wu, L.; Zhu, W.; Qian, H.; Xu, W. HucMSC-exosome mediated-Wnt4 signaling is required for cutaneous wound healing. Stem Cells, 2015, 33, 2158-2168.
[21]
Crawford, N. The presence of contractile proteins in platelet microparticles isolated from human and animal platelet-free plasma. Br. J. Haematol., 1971, 21, 53-69.
[22]
Barile, L.; Vassalli, G. Exosomes: Therapy delivery tools and biomarkers of diseases. Pharmacol. Ther., 2017, 174, 63-78.
[23]
Tkach, M.; Thery, C. Communication by extracellular vesicles: Where we are and where we need to go. Cell, 2016, 164, 1226-1232.
[24]
Bei, Y.; Das, S.; Rodosthenous, R.S.; Holvoet, P.; Vanhaverbeke, M.; Monteiro, M.C.; Monteiro, V.V.S.; Radosinska, J.; Bartekova, M.; Jansen, F.; Li, Q.; Rajasingh, J.; Xiao, J. Extracellular vesicles in cardiovascular theranostics. Theranostics, 2017, 7(17), 4168-4182.
[25]
Biancone, L.; Bruno, S.; Deregibus, M.C.; Tetta, C.; Camussi, G. Therapeutic potential of mesenchymal stem cell-derived microvesicles. Nephrol. Dial. Transplant., 2012, 27, 3037-3042.
[26]
Burrello, J.; Monticone, S.; Gai, C.; Gomez, Y.; Kholia, S.; Camussi, G. Stem cell-derived extracellular vesicles and immune-modulation. Front. Cell Dev. Biol., 2016, 4, 83.
[27]
Pittenger, M.F.; Mackay, A.M.; Beck, S.C.; Jaiswal, R.K.; Douglas, R.; Mosca, J.D.; Moorman, M.A.; Simonetti, D.W.; Craig, S.; Marshak, D.R. Multilineage potential of adult human mesenchymal stem cells. Science, 1999, 284, 143-147.
[28]
Rahaman, M.N.; Mao, J.J. Stem cell-based composite tissue constructs for regenerative medicine. Biotechnol. Bioeng., 2005, 91, 261-284.
[29]
Polak, J.M.; Bishop, A.E. Stem cells and tissue engineering: past, present, and future. Ann. N. Y. Acad. Sci., 2006, 1068, 352-366.
[30]
Csaki, C.; Schneider, P.R.; Shakibaei, M. Mesenchymal stem cells as a potential pool for cartilage tissue engineering. Ann. Anat., 2008, 190, 395-412.
[31]
Gregoire, C.; Lechanteur, C.; Briquet, A.; Baudoux, E.; Baron, F.; Louis, E.; Beguin, Y. Review article: Mesenchymal stromal cell therapy for inflammatory bowel diseases. Aliment. Pharmacol. Ther., 2017, 45, 205-221.
[32]
Markovic, B.S.; Kanjevac, T.; Harrell, C.R.; Gazdic, M.; Fellabaum, C.; Arsenijevic, N.; Volarevic, V. Molecular and cellular mechanisms involved in mesenchymal stem cell-based therapy of inflammatory bowel diseases. Stem Cell Rev., 2018, 14, 153-165.
[33]
Zhang, H.; Xiang, M.; Meng, D.; Sun, N.; Chen, S. Inhibition of myocardial ischemia/reperfusion injury by exosomes secreted from mesenchymal stem cells. Stem Cells Int., 2016, 2016Article ID 4328362
[34]
Lou, G.; Chen, Z.; Zheng, M.; Liu, Y. Mesenchymal stem cell-derived exosomes as a new therapeutic strategy for liver diseases. Exp. Mol. Med., 2017, 49(6)e346
[35]
Aghajani Nargesi, A.; Lerman, L.O.; Eirin, A. Mesenchymal stem cell-derived extracellular vesicles for kidney repair: current status and looming challenges. Stem Cell Res. Ther., 2017, 8, 273.
[36]
Wu, P.; Zhang, B.; Shi, H.; Qian, H.; Xu, W. MSC-exosome: A novel cell-free therapy for cutaneous regeneration. Cytotherapy, 2018, 20, 291-301.
[37]
Rager, T.M.; Olson, J.K.; Zhou, Y.; Wang, Y.; Besner, G.E. Exosomes secreted from bone marrow-derived mesenchymal stem cells protect the intestines from experimental necrotizing enterocolitis. J. Pediatr. Surg., 2016, 51, 942-947.
[38]
McCulloh, C.J.; Olson, J.K.; Wang, Y.; Zhou, Y.; Tengberg, N.H.; Deshpande, S.; Besner, G.E. Treatment of experimental necrotizing enterocolitis with stem cell-derived exosomes. J. Pediatr. Surg., 2018, 53, 1215-1220.
[39]
Yang, J.; Liu, X.X.; Fan, H.; Tang, Q.; Shou, Z.X.; Zuo, D.M.; Zou, Z.; Xu, M.; Chen, Q.Y.; Peng, Y.; Deng, S.J.; Liu, Y.J. Extracellular vesicles derived from bone marrow mesenchymal stem cells protect against experimental colitis via attenuating colon inflammation, oxidative stress and apoptosis. PLoS One, 2015, 10e0140551
[40]
Mao, F.; Wu, Y.; Tang, X.; Kang, J.; Zhang, B.; Yan, Y.; Qian, H. Exosomes derived from human umbilical cord mesenchymal stem cells relieve inflammatory bowel disease in mice. BioMed Res. Int., 2017, 20175356760
[41]
Wu, Y.; Qiu, W.; Xu, X.; Kang, J.; Wang, J.; Wen, Y.; Tang, X.; Yan, Y.; Qian, H.; Zhang, X.; Xu, W.; Mao, F. Exosomes derived from human umbilical cord mesenchymal stem cells alleviate inflammatory bowel disease in mice through ubiquitination. Am. J. Transl. Res., 2018, 10(7), 2026-2036.
[42]
Vignali, D.A.; Collison, L.W.; Workman, C.J. How regulatory T cells work. Nat. Rev. Immunol., 2008, 8, 523-532.
[43]
Tang, Q.; Bluestone, J.A. The Foxp3+ regulatory T cell: A jack of all trades, master of regulation. Nat. Immunol., 2008, 9, 239-244.
[44]
Reissig, S.; Tang, Y. Elevated levels of Bcl-3 inhibits Treg development and function resulting in spontaneous colitis. Nat. Commun., 2017, 8, 15069.
[45]
Del Fattore, A.; Luciano, R.; Pascucci, L.; Goffredo, B.M.; Giorda, E.; Scapaticci, M.; Fierabracci, A.; Muraca, M. Immunoregulatory effects of mesenchymal stem cell-derived extracellular vesicles on T lymphocytes. Cell Transplant., 2015, 24, 2615-2627.
[46]
Bain, C.C.; Mowat, A.M. Macrophages in intestinal homeostasis and inflammation. Immunol. Rev., 2014, 260, 102-117.
[47]
Song, W.J.; Li, Q.; Ryu, M.O.; Ahn, J.O.; Ha Bhang, D.; Chan Jung, Y.; Youn, H.Y. TSG-6 secreted by human adipose tissue-derived mesenchymal stem cells ameliorates DSS-induced colitis by inducing M2 macrophage polarization in mice. Sci. Rep., 2017, 7, 5187.
[48]
Lo Sicco, C.; Reverberi, D.; Balbi, C.; Ulivi, V.; Principi, E.; Pascucci, L.; Becherini, P.; Bosco, M.C.; Varesio, L.; Franzin, C.; Pozzobon, M.; Cancedda, R.; Tasso, R. Mesenchymal stem cell-derived extracellular vesicles as mediators of anti-inflammatory effects: Endorsement of macrophage polarization. Stem Cells Transl. Med., 2017, 6, 1018-1028.
[49]
Valadi, H.; Ekstrom, K.; Bossios, A.; Sjostrand, M.; Lee, J.J.; Lotvall, J.O. Exosome-mediated transfer of mRNAs and microRNAs is a novel mechanism of genetic exchange between cells. Nat. Cell Biol., 2007, 9, 654-659.
[50]
Yang, J.; Zhou, C.Z.; Zhu, R.; Fan, H.; Liu, X.X.; Duan, X.Y.; Tang, Q.; Shou, Z.X.; Zuo, D.M. miR-200b-containing microvesicles attenuate experimental colitis associated intestinal fibrosis by inhibiting epithelial-mesenchymal transition. J. Gastroenterol. Hepatol., 2017, 32, 1966-1974.
[51]
Bernardo, D.; Chaparro, M.; Gisbert, J.P. Human intestinal dendritic cells in inflammatory bowel diseases. Mol. Nutr. Food Res., 2018, 62e1700931
[52]
Steinman, R.M.; Hawiger, D.; Nussenzweig, M.C. Tolerogenic dendritic cells. Annu. Rev. Immunol., 2003, 21, 685-711.
[53]
Yang, X.; Meng, S.; Jiang, H.; Chen, T.; Wu, W. Exosomes derived from interleukin-10-treated dendritic cells can inhibit trinitrobenzene sulfonic acid-induced rat colitis. Scand. J. Gastroenterol., 2010, 45, 1168-1177.
[54]
Kim, S.H.; Lechman, E.R.; Bianco, N.; Menon, R.; Keravala, A.; Nash, J.; Mi, Z.; Watkins, S.C.; Gambotto, A.; Robbins, P.D. Exosomes derived from IL-10-treated dendritic cells can suppress inflammation and collagen-induced arthritis. J. Immunol., 2005, 174, 6440-6448.
[55]
Cai, Z.; Zhang, W.; Li, M.; Yue, Y.; Yang, F.; Yu, L.; Cao, X.; Wang, J. TGF-beta1 gene-modified, immature dendritic cells delay the development of inflammatory bowel disease by inducing CD4(+)Foxp3(+) regulatory T cells. Cell. Mol. Immunol., 2010, 7, 35-43.
[56]
Xia, C-M.; Zhao, Y.; Jiang, L.; Jiang, J.; Zhang, S-C. Schistosoma japonicum ova maintains epithelial barrier function during experimental colitis. World J. Gastroenterol., 2011, 17, 4810-4816.
[57]
Wang, L.; Yu, Z.; Wan, S.; Wu, F.; Chen, W.; Zhang, B.; Lin, D.; Liu, J.; Xie, H.; Sun, X.; Wu, Z. Exosomes derived from dendritic cells treated with Schistosoma japonicum soluble egg antigen attenuate DSS-induced colitis. Front. Pharmacol., 2017, 8, 651.
[58]
Medina, E.; Hartl, D. Myeloid-derived suppressor cells in infection: A general overview. J. Innate Immun., 2018, 10, 407-413.
[59]
Sica, A.; Massarotti, M. Myeloid suppressor cells in cancer and autoimmunity. J. Autoimmun., 2017, 85, 117-125.
[60]
Zea, A.H.; Rodriguez, P.C.; Atkins, M.B.; Hernandez, C.; Signoretti, S.; Zabaleta, J.; McDermott, D.; Quiceno, D.; Youmans, A.; O’Neill, A.; Mier, J.; Ochoa, A.C. Arginase-producing myeloid suppressor cells in renal cell carcinoma patients: A mechanism of tumor evasion. Cancer Res., 2005, 65, 3044-3048.
[61]
Crook, K.R.; Liu, P. Role of myeloid-derived suppressor cells in autoimmune disease. World J. Immunol., 2014, 4, 26-33.
[62]
Haile, L.A.; von Wasielewski, R.; Gamrekelashvili, J.; Kruger, C.; Bachmann, O.; Westendorf, A.M.; Buer, J.; Liblau, R.; Manns, M.P.; Korangy, F.; Greten, T.F. Myeloid-derived suppressor cells in inflammatory bowel disease: A new immunoregulatory pathway. Gastroenterology, 2008, 135, 871-881.
[63]
Wang, Y.; Tian, J.; Tang, X.; Rui, K.; Tian, X.; Ma, J.; Ma, B.; Xu, H.; Lu, L.; Wang, S. Exosomes released by granulocytic myeloid-derived suppressor cells attenuate DSS-induced colitis in mice. Oncotarget, 2016, 7, 15356-15368.
[64]
Zhang, Y-Z.; Li, Y-Y. Inflammatory bowel disease: Pathogenesis. World J. Gastroenterol., 2014, 20, 91-99.
[65]
Ma, X.; Dai, Z.; Sun, K.; Zhang, Y.; Chen, J.; Yang, Y.; Tso, P.; Wu, G.; Wu, Z. Intestinal epithelial cell endoplasmic reticulum stress and inflammatory bowel disease pathogenesis: An update review. Front. Immunol., 2017, 8, 1271.
[66]
Jiang, L.; Shen, Y.; Guo, D.; Yang, D.; Liu, J.; Fei, X.; Yang, Y.; Zhang, B.; Lin, Z.; Yang, F.; Wang, X.; Wang, K.; Wang, J.; Cai, Z. EpCAM-dependent extracellular vesicles from intestinal epithelial cells maintain intestinal tract immune balance. Nat. Commun., 2016, 7, 13045.
[67]
Sanders, M.E. Impact of probiotics on colonizing microbiota of the gut. J. Clin. Gastroenterol., 2011, 45(Suppl.), S115-S119.
[68]
Summers, R.W.; Elliott, D.E.; Urban, J.F., Jr; Thompson, R.A.; Weinstock, J.V. Trichuris suis therapy for active ulcerative colitis: A randomized controlled trial. Gastroenterology, 2005, 128, 825-832.
[69]
Hooper, L.V.; Gordon, J.I. Commensal host-bacterial relationships in the gut. Science, 2001, 292, 1115-1118.
[70]
Weingarden, A.R.; Vaughn, B.P. Intestinal microbiota, fecal microbiota transplantation, and inflammatory bowel disease. Gut Microbes, 2017, 8, 238-252.
[71]
Kang, C.S.; Ban, M.; Choi, E.J.; Moon, H.G.; Jeon, J.S.; Kim, D.K.; Park, S.K.; Jeon, S.G.; Roh, T.Y.; Myung, S.J.; Gho, Y.S.; Kim, J.G.; Kim, Y.K. Extracellular vesicles derived from gut microbiota, especially Akkermansia muciniphila, protect the progression of dextran sulfate sodium-induced colitis. PLoS One, 2013, 8(10)e76520
[72]
Ruyssers, N.E.; De Winter, B.Y.; De Man, J.G.; Loukas, A.; Pearson, M.S.; Weinstock, J.V.; Van den Bossche, R.M.; Martinet, W.; Pelckmans, P.A.; Moreels, T.G. Therapeutic potential of helminth soluble proteins in TNBS-induced colitis in mice. Inflamm. Bowel Dis., 2009, 15, 491-500.
[73]
Cancado, G.G.; Fiuza, J.A.; de Paiva, N.C.; Lemos Lde, C.; Ricci, N.D.; Gazzinelli-Guimaraes, P.H.; Martins, V.G.; Bartholomeu, D.C.; Negrao-Correa, D.A.; Carneiro, C.M.; Fujiwara, R.T. Hookworm products ameliorate dextran sodium sulfate-induced colitis in BALB/c mice. Inflamm. Bowel Dis., 2011, 17, 2275-2286.
[74]
Ferreira, I.; Smyth, D.; Gaze, S.; Aziz, A.; Giacomin, P.; Ruyssers, N.; Artis, D.; Laha, T.; Navarro, S.; Loukas, A.; McSorley, H.J. Hookworm excretory/secretory products induce interleukin-4 (IL-4)+ IL-10+ CD4+ T cell responses and suppress pathology in a mouse model of colitis. Infect. Immun., 2013, 81, 2104-21011.
[75]
Eichenberger, R.M.; Ryan, S.; Jones, L.; Buitrago, G.; Polster, R.; Montes de Oca, M.; Zuvelek, J.; Giacomin, P.R.; Dent, L.A.; Engwerda, C.R.; Field, M.A.; Sotillo, J.; Loukas, A. Hookworm Secreted extracellular vesicles interact with host cells and prevent inducible colitis in mice. Front. Immunol., 2018, 9, 850.
[76]
Quigley, M.; McGuire, W. Formula versus donor breast milk for feeding preterm or low birth weight infants. Cochrane Database Syst. Rev., 2014, 22CD002971
[77]
Hock, A.; Miyake, H.; Li, B.; Lee, C.; Ermini, L.; Koike, Y.; Chen, Y.; Maattanen, P.; Zani, A.; Pierro, A. Breast milk-derived exosomes promote intestinal epithelial cell growth. J. Pediatr. Surg., 2017, 52, 755-759.
[78]
Ju, S.; Mu, J.; Dokland, T.; Zhuang, X.; Wang, Q.; Jiang, H.; Xiang, X.; Deng, Z.B.; Wang, B.; Zhang, L.; Roth, M.; Welti, R.; Mobley, J.; Jun, Y.; Miller, D.; Zhang, H.G. Grape exosome-like nanoparticles induce intestinal stem cells and protect mice from DSS-induced colitis. Mol. Ther., 2013, 21, 1345-1357.
[79]
Sonnenburg, E.D.; Smits, S.A.; Tikhonov, M.; Higginbottom, S.K.; Wingreen, N.S.; Sonnenburg, J.L. Diet-induced extinctions in the gut microbiota compound over generations. Nature, 2016, 529, 212-215.
[80]
Teng, Y.; Ren, Y.; Sayed, M.; Hu, X.; Lei, C.; Kumar, A.; Hutchins, E.; Mu, J.; Deng, Z.; Luo, C.; Sundaram, K.; Sriwastva, M.K.; Zhang, L.; Hsieh, M.; Reiman, R.; Haribabu, B.; Yan, J.; Jala, V.R.; Miller, D.M.; Van Keuren-Jensen, K.; Merchant, M.L.; McClain, C.J.; Park, J.W.; Egilmez, N.K.; Zhang, H.G. Plant-derived exosomal microRNAs shape the gut microbiota. Cell Host Microbe, 2018, 24, 637-652.
[81]
Clemmens, H.; Lambert, D.W. Extracellular vesicles: Translational challenges and opportunities. Biochem. Soc. Trans., 2018, 46, 1073-1082.
[82]
He, C.; Zheng, S.; Luo, Y.; Wang, B. Exosome theranostics: Biology and translational medicine. Theranostics, 2018, 8, 237-255.

Rights & Permissions Print Cite
© 2024 Bentham Science Publishers | Privacy Policy