[1]
Bozel, J.J.; Petersen, G.R. Technology development for the production
of biobased products from biorefinery carbohydrates – the US
Department of Energy’s ‘‘Top 10” revisited. In: Green Chemo; , 2010; 12, p. 539.
[2]
McKinlay, J.B.; Vieille, C.; Zeikus, J.G. Prospects for a bio-based succinate industry. Appl. Microbiol. Biotechnol., 2007, 76, 727.
[3]
Song, H.; Lee, S.Y. Production of succinic acid by bacterial fermentation. Enzyme Microb. Technol., 2006, 39, 352.
[4]
Zhang, X.; Shanmugam, K.T.; Ingram, L.O. Fermentation of glycerol to succinate by metabolically engineered strains of Escherichia coli. Appl. Environ. Microbiol., 2010, 76, 2397.
[5]
Ahn, J.H.; Jang, Y.S.; Lee, S.Y. Production of succinic acid by metabolically engineered microorganisms. Curr. Opin. Biotechnol., 2016, 15, 54.
[6]
Inui, M.; Murakami, S.; Okino, S.; Kawaguchi, H.; Vertès, A.A.; Yukawa, H. Metabolic analysis of Corynebacterium glutamicum during lactate and succinate productions under oxygen deprivation conditions. J. Mol. Microbiol. Biotechnol., 2004, 7, 182.
[7]
Sansinenea, E.; Ortiz, A. Secondary metabolites of soil Bacillus spp. Biotechnol. Lett., 2011, 33, 1523.
[8]
Fasim, F.; Ahmed, N.; Parson, R.; Gadd, G.M. Solubilization of zinc salts by a bacterium isolated from the air environment of a tannery. FEMS Microbiol. Lett., 2002, 213(1), 1-6.
[9]
Lide, D.R.; Milne, G.W.A. Handbook of data on organic compounds.
Vol I, 3rd ed., CRC Press: United Kingdom, pp. 1793 , 1994.
[10]
Crystal data for succinic acid: C4O4H6, M = 118.09, monoclinic,
space group P21/n, cell parameters a = 5.586 (9), b = 8.963 (2), c =
7.680 (13) Å, β = 137.9 (3)˚, Z = 2, Dc = 1.522 g cm-3, 2944 reflections
collected on a Bruker P4 diffractometer at room temp., with
the Mo-Kα radiation (λ = 0.71073 Å) in the range 2θ = 7.296–
52.666˚, of which 523 are unique (Rint = 0.5802), 407 variables refined:
R1 = 0.1232 [301 data with I > 2σ(I)] and wR2 = 0.4041 [all
data].
[11]
Lane, D.J.; Pace, B.; Olsen, G.J.; Stahl, D.A.; Sogin, M.L.; Pace, N.R. Rapid determination of 16S ribosomal RNA sequences for phylogenetic analyses. Proc. Natl. Acad. Sci. USA, 1985, 82, 6955-6959.
[12]
Cheneby, D.L.; Philippot, A.; Hartmann, C.; Germon, J.C. 16S rDNA analysis for characterization of denitrifying bacteria isolated from three agricultural soils. FEMS Microbiol. Ecol., 2000, 24, 121.
[13]
Chen, Y.P.; Rekha, P.D.; Arun, A.B.; Shen, F.T.; Lai, W-A.; Young, C.C. Phosphate solubilizing bacteria from subtropical soil and their tricalcium phosphate solubilizing abilities. Appl. Soil Ecol., 2006, 34, 33.
[14]
Vassileva, M.; Serrano, M.; Bravo, V.; Jurado, E.; Nikolaeva, I.; Martos, V.; Vassilev, N. Multifunctional properties of phosphate-solubilizing microorganisms grown on agro-industrial wastes in fermentation and soil conditions. Appl. Microbiol. Biotechnol., 2010, 85, 1287.