[1]
Yamanishi, Y.; Araki, M.; Gutteridge, A.; Honda, W.; Kanehisa, M. Prediction of drug–target interaction networks from the integration of chemical and genomic spaces. Bioinformatics, 2008, 24(13), i232-i240.
[2]
Schomburg, I.; Chang, A.; Placzek, S.; Söhngen, C.; Rother, M.; Lang, M.; Munaretto, C.; Ulas, S.; Stelzer, M.; Grote, A.; Scheer, M.; Schomburg, D. BRENDA in 2013: Integrated reactions, kinetic data, enzyme function data, improved disease classification: New options and contents in BRENDA. Nucleic Acids Res., 2013, 41(Database issue), 764-772.
[3]
Law, V.; Knox, C.; Djoumbou, Y.; Jewison, T.; Guo, A.C.; Liu, Y.; Maciejewski, A.; Arndt, D.; Wilson, M.; Neveu, V.; Tang, A.; Gabriel, G.; Ly, C.; Adamjee, S.; Dame, Z.T.; Han, B.; Zhou, Y.; Wishart, D.S. DrugBank 4.0: Shedding new light on drug metabolism. Nucleic Acids Res., 2014, 42(Database issue), 1091-1097.
[4]
Hecker, N.; Ahmed, J.; Eichborn, J.V.; Dunkel, M.; Macha, K.; Eckert, A.; Gilson, M.K.; Bourne, P.E.; Preissner, R. SuperTarget goes quantitative: Update on drug-target interactions. Nucleic Acids Res., 2012, 40(Database issue), 1113-1117.
[5]
Kanehisa, M.; Goto, S.; Hattori, M.; Aoki-Kinoshita, K.F.; Itoh, M.; Kawashima, S.; Katayama, T.; Araki, M.; Hirakawa, M. From genomics to chemical genomics: New developments in KEGG. Nucleic Acids Res., 2006, 34(Database issue), 354-357.
[6]
Park, Y.; Marcotte, E.M. A flaw in the typical evaluation scheme for pair-input computational predictions. Nature. Methods, 2012, 9(12), 1134-1136.
[7]
Hattori, M.; Okuno, Y. Susumu, Goto, A.; Kanehisa, M. Development of a chemical structure comparison method for integrated analysis of chemical and genomic information in the metabolic pathways. J. Am. Chem. Soc., 2003, 125(39), 11853.
[8]
Smith, T.F.; Waterman, M.S. Identification of common molecular subsequences. J. Mol. Biol., 1981, 147(1), 195-197.
[9]
Laarhoven, T.V.; Nabuurs, S.B.; Marchiori, E. Gaussian interaction profile kernels for predicting drug-target interaction. Bioinformatics, 2011, 27(21), 3036-3043.
[10]
Chen, X.; Liu, M.X.; Yan, G.Y. Drug-target interaction prediction by random walk on the heterogeneous network. Mol. Biosyst., 2012, 8(7), 1970.
[11]
Cheng, F.; Liu, C.; Jiang, J.; Lu, W.; Li, W.; Liu, G.; Zhou, W.; Huang, J.; Tang, Y. Prediction of drug-target interactions and drug repositioning via network-based inference. PLOS Comput. Biol., 2012, 8(5), e1002503
[12]
Cao, D.S.; Zhang, L.X.; Tan, G.S.; Xiang, Z.; Zeng, W.B.; Xu, Q.S.; Chen, A.F. Computational prediction of drug target interactions using chemical, biological, and network features. Mol. Inform., 2014, 33(10), 669-681.
[13]
Breiman, L. Random Forests. Mach. Learn., 2001, 45(1), 5-32.
[14]
Ding, Y.; Tang, J.; Guo, F. Identification of drug-target interactions via multiple information integration. Inf. Sci., 2017, 418, 546-560.
[15]
Ding, Y.; Tang, J.; Guo, F. Predicting protein-protein interactions via multivariate mutual information of protein sequences. BMC Bioinformatics, 2016, 17(1), 398.
[16]
Cortes, C.; Vapnik, V. Support-vector networks. Mach. Learn., 1995, 20(3), 273-297.
[17]
Yan, K.; Zhang, D. Feature selection and analysis on correlated gas sensor data with recursive feature elimination. Sens. Actuators B Chem., 2015, 212, 353-363.
[18]
Li, Z.; Han, P.; You, Z.; Li, X.; Zhang, Y.; Yu, H.; Nie, R.; Chen, X. In silico prediction of drug-target interaction networks based on drug chemical structure and protein sequences. Sci. Rep., 2017, 7(1), 11174.
[19]
Gui, J.; Liu, T.; Tao, D.; Sun, Z.; Tan, T. Representative vector machines: A unified framework for classical classifiers. IEEE Trans. Cybern., 2017, 46(8), 1877-1888.
[20]
Wen, M.; Zhang, Z.; Niu, S.; Sha, H.; Yang, R.; Yun, Y.; Lu, H. Deep-learning-based drug–target interaction prediction. J. Proteome Res., 2017, 16(4), 1401.
[21]
Hinton, G.E.; Salakhutdinov, R.R. Reducing the dimensionality of data with neural networks. Science, 2006, 313(5786), 504-507.
[22]
Bleakley, K.; Yamanishi, Y. Supervised prediction of drug-target interactions using bipartite local models. Bioinformatics, 2009, 25(18), 2397-2403.
[23]
Chang, C.C.; Lin, C.J. LIBSVM: A library for support vector machines. ACM Trans. Intell. Syst. Technol., 2011, 2, 1-39.
[24]
Mei, J.P.; Kwoh, C.K.; Yang, P.; Li, X.L.; Zheng, J. Drug-target interaction prediction by learning from local information and neighbors. Bioinformatics, 2013, 29(2), 238-245.
[25]
Xia, Z.; Wu, L.Y.; Zhou, X.; Wong, S.T. Semi-supervised drug-protein interaction prediction from heterogeneous biological spaces. BMC Syst. Biol., 2010, 4(S2), 1-16.
[26]
Nascimento, A.C.A.; Prudêncio, R.B.C.; Costa, I.G. A multiple kernel learning algorithm for drug-target interaction prediction. BMC Bioinformatics, 2016, 17(1), 46.
[27]
Cichonska, A.; Pahikkala, T.; Szedmak, S.; Julkunen, H.; Airola, A.; Heinonen, M.; Aittokallio, T.; Rousu, J. Learning with multiple pairwise kernels for drug bioactivity prediction. Bioinformatics, 2018, 34(13), i509-i518.
[28]
Zheng, X.; Ding, H.; Mamitsuka, H.; Zhu, S. Collaborative matrix factorization with multiple similarities for predicting drug-target interactions. In: Proceedings of the 19th ACM SIGKDD International Conference on Knowledge Discovery and Data Mining, ACM; Chicago, Illinois, USA,2013, pp. 1025-1033.
[29]
Gönen, M. Predicting drug–target interactions from chemical and genomic kernels using Bayesian matrix factorization. Bioinformatics, 2012, 28(18), 2304-2310.
[30]
Liu, Y.; Wu, M.; Miao, C.; Zhao, P.; Li, X-L. Neighborhood regularized logistic matrix factorization for drug-target interaction prediction. PLOS Comput. Biol., 2016, 12(2), e1004760
[31]
Hao, M.; Bryant, S.H.; Wang, Y. Predicting drug-target interactions by dual-network integrated logistic matrix factorization. Sci. Rep., 2017, 7, 40376.
[32]
Ezzat, A.; Zhao, P.; Wu, M.; Li, X.L.; Kwoh, C.K. Drug-target interaction prediction with graph regularized matrix factorization. IEEE/ACM Trans. Comput. Biol. Bioinformatics, 2016, 14(3), 646-656.
[33]
Zhang, W.; Chen, Y.; Li, D. Drug-target interaction prediction through label propagation with linear neighborhood information. Molecules, 2017, 22(12), 2056.
[34]
Luo, Y.; Zhao, X.; Zhou, J.; Yang, J.; Zhang, Y.; Kuang, W.; Peng, J.; Chen, L.; Zeng, J. A network integration approach for drug-target interaction prediction and computational drug repositioning from heterogeneous information. Nat. Commun., 2017, 8(1), 573.
[35]
Bolgár, B.; Antal, P.V.B-M.K-L.M.F. fusion of drugs, targets and interactions using variational Bayesian multiple kernel logistic matrix factorization. BMC Bioinformatics, 2017, 18(1), 440.
[36]
Peng, L.; Liao, B.; Zhu, W.; Li, Z.; Li, K. Predicting drug-target interactions with multi-information fusion. IEEE J. Biomed. Health Inform., 2017, 21(2), 561-572.
[37]
Lan, W.; Wang, J.; Li, M.; Liu, J.; Li, Y.; Wu, F-X.; Pan, Y. Predicting drug-target interaction using positive-unlabeled learning. Neurocomputing, 2016, 206, 50-57.
[38]
Kuang, Q.; Xu, X.; Li, R.; Dong, Y.; Li, Y.; Huang, Z.; Li, Y.; Li, M. An eigenvalue transformation technique for predicting drug-target interaction. Sci. Rep., 2015, 5, 13867.
[39]
Chen, X.; Yan, C.C.; Zhang, X.; Zhang, X.; Dai, F.; Yin, J.; Zhang, Y. Drug-target interaction prediction: Databases, web servers and computational models. Brief. Bioinform., 2016, 17(4), 696-712.
[40]
Hao, M.; Wang, Y.; Bryant, S.H. Improved prediction of drug-target interactions using regularized least squares integrating with kernel fusion technique. Anal. Chim. Acta, 2016, 909, 41-50.
[41]
Chen, X.; Huang, L.; Xie, D.; Zhao, Q. EGBMMDA: Extreme Gradient Boosting Machine for MiRNA-Disease Association prediction. Cell Death Dis., 2018, 9(1), 3.
[42]
Chen, X.; Qu, J.; Yin, J. TLHNMDA: Triple Layer Heterogeneous Network Based Inference for MiRNA-Disease Association Prediction. Front. Genet., 2018, 9, 234.
[43]
Chen, X.; Wang, L.; Qu, J.; Guan, N.N.; Li, J.Q. Predicting miRNA-disease association based on inductive matrix completion. Bioinformatics, 2018, 34(24), 4256-4265.
[44]
Chen, X.; Xie, D.; Wang, L.; Zhao, Q.; You, Z.H.; Liu, H. BNPMDA: Bipartite Network Projection for MiRNA-Disease Association prediction. Bioinformatics, 2018, 34(18), 3178-3186.
[45]
Chen, X.; Yin, J.; Qu, J.; Huang, L. MDHGI: Matrix Decomposition and Heterogeneous Graph Inference for miRNA-disease association prediction. PLOS Comput. Biol., 2018, 14(8), e1006418
[46]
Xie, D.; Zhao, Q.; Liu, H.; Wang, F.; Yan, G-Y.; Chen, X. SSCMDA: Spy and super cluster strategy for MiRNA-disease association prediction. Oncotarget, 2018, 9(2), 1826-1842.
[47]
You, Z-H.; Huang, Z-A.; Zhu, Z.; Yan, G-Y.; Li, Z-W.; Wen, Z.; Chen, X. PBMDA: A novel and effective path-based computational model for miRNA-disease association prediction. PLOS Comput. Biol., 2017, 13(3), e1005455
[48]
Zhang, W.; Yue, X.; Tang, G.; Wu, W.; Huang, F.; Zhang, X. SFPEL-LPI: Sequence-based feature projection ensemble learning for predicting LncRNA-protein interactions. PLOS Comput. Biol., 2018, 14(12), e1006616
[49]
Zhao, Q.; Zhang, Y.; Hu, H.; Ren, G.; Zhang, W.; Liu, H. IRWNRLPI: Integrating Random Walk and Neighborhood Regularized Logistic Matrix Factorization for lncRNA-protein interaction prediction. Front. Genet., 2018, 9, 239.
[50]
Hu, H.; Zhang, L.; Ai, H.; Zhang, H.; Fan, Y.; Zhao, Q.; Liu, H. HLPI-Ensemble: Prediction of human lncRNA-protein interactions based on ensemble strategy. RNA Biol., 2018, 15(6), 797-806.
[51]
Liu, H.; Ren, G.; Hu, H.; Zhang, L.; Ai, H.; Zhang, W.; Zhao, Q. LPI-NRLMF: lncRNA-protein interaction prediction by neighborhood regularized logistic matrix factorization. Oncotarget, 2017, 8(61), 103975-103984.
[52]
Hu, H.; Zhu, C.; Ai, H.; Zhang, L.; Zhao, J.; Zhao, Q.; Liu, H. LPI-ETSLP: lncRNA-protein interaction prediction using eigenvalue transformation-based semi-supervised link prediction. Mol. Biosyst., 2017, 13(9), 1781-1787.
[53]
Zhang, W.; Qu, Q.; Zhang, Y.; Wang, W. The linear neighborhood propagation method for predicting long non-coding RNA-protein Interactions. Neurocomputing, 2018, 273, 526-534.
[54]
Zhao, Q.; Yu, H.; Ming, Z.; Hu, H.; Ren, G.; Liu, H. The bipartite network projection recommended algorithm for predicting long noncoding RNA-protein interactions. Mol. Thera. Nucleic Acid, 2018, 13, 464-471.
[55]
Zhao, Q.; Liang, D.; Hu, H.; Ren, G.; Liu, H. RWLPAP: Random walk for lncRNA-protein associations prediction. Protein Pept. Lett., 2018, 25(9), 830-837.
[56]
Ding, Y.; Tang, J.; Guo, F. Identification of drug-side effect association via multiple information integration with centered kernel alignment. Neurocomputing, 2019, 325(24), 211-224.
[57]
Ding, Y.; Tang, J.; Guo, F. Identification of drug-side effect association via semi-supervised model and multiple kernel learning. IEEE J. Biomed. Health Inform., 2018, 1-1.
[58]
Zhang, W.; Zou, H.; Luo, L.; Liu, Q.; Wu, W.; Xiao, W. Predicting potential side effects of drugs by recommender methods and ensemble learning. Neurocomputing, 2016, 173(P3), 979-987.
[59]
Chen, X.; Guan, N-N.; Sun, Y-Z.; Li, J-Q.; Qu, J. MicroRNA-small molecule association identification: From experimental results to computational models. Brief. Bioinform., 2018., bby098
[60]
Chen, X.; Yan, C.C.; Zhang, X.; You, Z.H. Long non-coding RNAs and complex diseases: From experimental results to computational models. Brief. Bioinform., 2016, 18(4), 558-576.
[61]
Yan, G-Y.; Chen, X. Novel human lncRNA–disease association inference based on lncRNA expression profiles. Bioinformatics, 2013, 29(20), 2617-2624.
[62]
Chen, X.; Huang, Y-A.; You, Z-H.; Yan, G.Y.; Wang, X.S. A novel approach based on KATZ measure to predict associations of human microbiota with non-infectious diseases. Bioinformatics, 2017, 34(8), 1440-1440.
[63]
Zhang, W.; Yue, X.; Lin, W.; Wu, W.; Liu, R.; Huang, F.; Liu, F. Predicting drug-disease associations by using similarity constrained matrix factorization. BMC Bioinformatics, 2018, 19(1), 233.
[64]
Zhang, W.; Yue, X.; Huang, F.; Liu, R.; Chen, Y.; Ruan, C. Predicting drug-disease associations and their therapeutic function based on the drug-disease association bipartite network. Methods, 2018, 145(1), 51-59.
[65]
Martínez, V.; Navarro, C.; Cano, C.; Fajardo, W.; Blanco, A. DrugNet: Network-based drug–disease prioritization by integrating heterogeneous data. Artif. Intell. Med., 2015, 63(1), 41-49.
[66]
Luo, H.; Wang, J.; Li, M.; Luo, J.; Peng, X.; Wu, F.X.; Pan, Y. Drug repositioning based on comprehensive similarity measures and Bi-Random walk algorithm. Bioinformatics, 2016, 32(17), 2664-2671.
[67]
Liang, X.; Zhang, P.; Yan, L.; Fu, Y.; Peng, F. LRSSL: Predict and interpret drug-disease associations based on data integration using sparse subspace learning. Bioinformatics, 2017, 33(8), 1187-1196.