Research Article

沙特健康年轻女性维生素D基因多态性与骨密度的关系

卷 19, 期 3, 2019

页: [196 - 205] 页: 10

弟呕挨: 10.2174/1566524019666190409122155

价格: $65

摘要

背景:骨质疏松症是一种全身性骨骼疾病,其特征是骨密度低。维生素D代谢可能在其病理生理学中起关键作用目的:确定维生素D受体基因多态性与骨密度之间的关系,以及它与健康的沙特女性人群中骨转换生化标志物的关系。 方法:在沙特阿拉伯王国麦地那的泰巴大学进行横断面研究。在获得知情同意后,收集来自300名受试者的血液样本以测量钙,磷,碱性磷酸酶,甲状旁腺激素骨钙素和1,25-OHD,并对维生素D受体(VDR)rs2228570,rs731236和rs11568820中的SNP进行遗传分析。 。 结果:VDR rs2228570的CC,CT和TT等位基因之间存在显着差异。携带TT等位基因与骨密度降低和骨质减少的存在增加相关,维生素D3水平较低(p≤0.001)。 VDR rs731236基因显示CC等位基因携带者具有显着的骨质减少风险。 rs11568820的AA基因型显示出较低水平的体力活动,骨矿物质密度,Z评分,血清骨钙素,磷和甲状旁腺激素。 结论:VDR基因的SNP rs2228570的TT等位基因和CC基因型的SNP rs731236的存在与骨质减少的存在和骨矿物质密度的降低以及维生素D的功能障碍有关。

关键词: 维生素D,基因,多态性,骨密度,骨质疏松症,骨矿物质。

[1]
Miller PD, Siris ES, Barrett-Connor E, et al. Prediction of fracture risk in postmenopausal white women with peripheral bone densitometry: evidence from the National Osteoporosis Risk Assessment. J Bone Miner Res 2002; 17: 2222-30.
[2]
Horst-Sikorska W, Dytfeld J, Wawrzyniak A, et al. Vitamin D receptor gene polymorphisms, bone mineral density and fractures in postmenopausal women with osteoporosis. Mol Biol Rep 2013; 40: 383-90.
[3]
Burge R, Dawson-Hughes B, Solomon DH, Wong JB, King A. Tosteson A. Incidence and economic burden of osteoporosisrelated fractures in the United States, 2005-2025. J Bone Miner Res 2007; 22: 465-75.
[4]
Bubshait D, Sadat-Ali M. Economic implications of osteoporosis-related femoral fractures in Saudi Arabian Society. Calcif Tissue Int 2007; 81: 455-8.
[5]
Ardawi AA, Maimany TM. Bahksh Han, Nasrat WA, Milaat RM, Al-Raddadi A. Bone mineral density of the spine and femur in healthy Saudis. Osteoporos Int 2005; 16: 43-55.
[6]
Sambrook P, Cooper C. Osteoporosis. Lancet 2007; 367: 2010-8.
[7]
Keramat A, Patwardhan B, Larijani B, et al. The assessment of osteoporosis risk factors in Iranian women compared with Indian women. BMC Musculoskelet Disord 2008; 9: 28-38.
[8]
Hossein-nezhad A, Ahangari G, Larijani B. Evaluating of VDR Gene Variation and its Interaction with Immune Regulatory Molecules in Osteoporosis. Iran J Public Health 2009; 38: 27-36.
[9]
Zheng HF, Spector TD, Richards JB. Insights into the genetics of osteoporosis from recent genome-wide association studies. Expert Rev Mol Med 2011; 26e28
[10]
El Desouki Osteoporosis in postmenopausal osteoporosis in Saudi women using dual x-ray bone densitometry. Saudi Med J 2003; 24: 953-6.
[11]
American Academy of Pediatrics: Committee on Public Education. American Academy of Pediatrics: Children, adolescents, and television. Pediatrics 2001; 107: 423-6.
[12]
Ridley K, Ainsworth B, Olds T. Development of a compendium of energy expenditure for youth. Int J Behav Nutr Phys Act 2008; 5: 45.
[13]
Hollis BW. Circulating 25-hydroxyvitamin D levels indicative of vitamin D sufficiency: implications for establishing a new effective dietary intake recommendation for vitamin D. J Nutr 2005; 135: 317-22.
[14]
Kao PC, Van Heerden JA, Grant CS, Klee GG, Khosla S. Clinical performance of parathyroid hormone immunometric assays. Mayo Clin Proc 1992; 67: 637-45.
[15]
DeSanctis V, Soliman AT, Elsedfy H, et al. Osteoporosis in thalassemia major: an update and the I-CET 2013 recommendations for surveillance and treatment. Pediatr Endocrinol Rev 2013; 11: 167-80.
[16]
Maruotti N, Cantatore FP. Vitamin D and the immune system. J Rheumatol 2010; 37: 491-5.
[17]
Zhang J, Chalmers MJ, Stayrook KR, et al. DNA binding alters coactivator interaction surfaces of the intact VDR-RXR complex. Nat Struct Mol Biol 2011; 18: 556-63.
[18]
Ding C, Gao D, Wilding J, Trayhurn P, Bing C. Vitamin D signaling in adipose tissue. Br J Nutr 2012; 108: 1915-23.
[19]
Annamaneni S, Bindu CH, Reddy KP, Vishnupriya S. Association of vitamin D receptor gene start codon (Fok-1) polymorphism with high myopia. Oman J Ophthalmol 2011; 4: 57-62.
[20]
Whitfield GK, Remus LS, Jurutka PW, et al. Functionally relevant polymorphisms in the human nuclear vitamin D receptor gene. Mol Cell Endocrinol 2001; 177: 145-59.
[21]
Robien K, Butler LM, Wang R, et al. Genetic and environmental predictors of serum 25 hydroxyvitamin D concentrations among middle-aged and elderly Chinese in Singapore. Br J Nutr 2013; 109: 493-502.
[22]
Engelman CD, Fingerlin TE, Langefeld CD, et al. Genetic and environmental determinants of 25-hydroxyvitamin D and 1,25-dihydroxyvitamin D levels in Hispanic and African Americans. J Clin Endocrinol Metab 2008; 93: 3381-8.
[23]
Uitterlinden AG, Fang Y, Van Meurs JB, Pols HA, Van Leeuwen JP. Genetics and biology of vitamin D receptor polymorphisms. Gene 2004; 338: 143-56.
[24]
Valtuena J, Gonzalez-Gross M, Huybrechts I, et al. Factors associated with vitamin D deficiency in European adolescents: the HELENA study. J Nutr Sci Vitaminol 2013; 59(3): 161-71.
[25]
Vupputuri MR, Goswami R, Gupta N, Ray D, Tandon N, Kumar N. Prevalence and functional significance of 25-hydroxyvitamin D deficiency and vitamin D receptor gene polymorphisms in Asian Indians. Am J Clin Nutr 2006; 83: 1411-9.
[26]
Santos BR, Mascarenhas LP, Satler F, Boguszewski MC, Spritzer PM. Vitamin D deficiency in girls from south Brazil: a cross-sectional study on prevalence and association with vitamin D receptor gene variants. BMC Pediatr 2012; 12: 62.
[27]
Arai H, Miyamoto KI, Yoshida M, et al. The polymorphism in the caudal-related homeodomain protein Cdx-2 binding element in the human vitamin D receptor gene. J Bone Miner Res 2001; 16: 1256-64.
[28]
Uitterlinden AG, Ralston SH, Brandi ML, et al. The association between common vitamin D receptor gene variations and osteoporosis: a participant level meta-analysis. Ann Intern Med 2006; 145: 255-64.
[29]
Fang Y, van Meurs JB, Bergink AP, et al. Cdx-2 polymorphism in the promoter region of the human vitamin D receptor gene determines susceptibility to fracture in the elderly. J Bone Miner Res 2003; 18: 1632-41.

Rights & Permissions Print Cite
© 2024 Bentham Science Publishers | Privacy Policy