[1]
Rabinow, J. The magnetic fluid clutch. Electr. Eng., 1948, 67(12), 1167-1167.
[2]
Rabinow, J. Magnetic fluid torque and force transmitting device.
U.S. Patent 2,575,360, November 20, 1951.
[3]
De Vicente, J.; Klingenberg, D.J.; Hidalgo-Alvarez, R. Magnetorheological fluids: A review. Soft Matter, 2011, 7(8), 3701-3710.
[4]
Ghaffari, A.; Hashemabadi, S.H.; Ashtiani, M. A review on the simulation and modeling of magnetorheological fluids. J. Intell. Mater. Syst. Struct., 2015, 26(8), 881-904.
[5]
Wang, D.H.; Liao, W.H. Magnetorheological fluid dampers: A review of parametric modelling. Smart Mater. Struct., 2011, 20(2), 023001.
[6]
Zhu, X.; Jing, X.; Cheng, L. Magnetorheological fluid dampers: A review on structure design and analysis. J. Intell. Mater. Syst. Struct., 2012, 23(8), 839-873.
[7]
Choi, S.B.; Li, W.; Yu, M.; Du, H.; Fu, J.; Do, P.X. State of the art of control schemes for smart systems featuring magneto-rheological materials. Smart Mater. Struct., 2016, 25(4), 043001.
[8]
Carlson, J.D.; Catanzarite, D.M.; St. Clair, K.A. Commercial magneto-rheological fluid devices. Int. J. Modern Phys. B, 1996. 10(23n24), 2857-2865.
[9]
Oh, J.S.; Choi, S.H.; Choi, S.B. Design of a 4-DOF MR haptic master for application to robot surgery: Virtual environment work. Smart Mater. Struct., 2014, 23(9), 095032.
[10]
Song, B.K.; Oh, J.S.; Choi, S.B. Design of a new 4-DOF haptic master featuring magnetorheological fluid. Adv. Mech. Eng., 2014, 6, 843498.
[11]
Hahm, D.; Ok, S.Y.; Park, W.; Koh, H.M.; Park, K.S. Cost-effectiveness evaluation of an MR damper system based on a life-cycle cost concept. KSCE J. Civ. Eng., 2013, 17(1), 145-154.
[12]
Wu, W.J.; Cai, C.S.; Chen, S.R. Experiments on reduction of cable vibration using MR dampers. In: Proceedings of 17th ASCE Engineering Mechanics Conference, 2004.
[13]
Zapateiro, M.; Karimi, H.R.; Luo, N.; Spencer, B.F. Frequency domain control based on quantitative feedback theory for vibration suppression in structures equipped with magnetorheological dampers. Smart Mater. Struct., 2009, 18(9), 095041.
[14]
Weber, F.; Distl, H. Amplitude and frequency independent cable damping of Sutong Bridge and Russky Bridge by magnetorheological dampers. Struct. Contr. Health Monit., 2015, 22(2), 237-254.
[15]
Fujitani, H.; Sodeyama, H.; Tomura, T.; Hiwatashi, T.; Shiozaki, Y.; Hata, K.; Soda, S. Development of 400kN magnetorheological damper for a real base-isolated building. In:Smart Structures and Materials: Damping and Isolation; International Society for Optics and Photonics, 2003, pp. 265-277.
[16]
Ahmadian, M. Semiactive fuzzy logic control for heavy truck primary suspensions: Is it effective? (No. 2005-01-3542). SAE Tech. Paper,2005.
[17]
Song, X.; Ahmadian, M.; Southward, S.C. Modeling magnetorheological dampers with application of nonparametric approach. J. Intell. Mater. Syst. Struct., 2005, 16(5), 421-432.
[18]
Dutta, S.; Choi, S.B. A nonlinear kinematic and dynamic modeling of Macpherson suspension systems with a magneto-rheological damper. Smart Mater. Struct., 2016, 25(3), 035003.
[19]
Kim, H.C.; Shin, Y.J.; You, W.; Jung, K.C.; Oh, J.S.; Choi, S.B. A
ride quality evaluation of a semi-active railway vehicle suspension
system with MR damper: Railway field tests. In: Proceedings of the
Institution of Mechanical Engineers, Part F: J. Rail Rapid Transit.,2017, 231(3), 306-316.
[20]
Simon, D.; Ahmadian, M. Vehicle evaluation of the performance of magneto rheological dampers for heavy truck suspensions. J. Vib. Acoust., 2001, 123(3), 365-375.
[21]
Wang, D.H.; Liao, W.H. Semi-active suspension systems for railway vehicles using magnetorheological dampers. Part I: System integration and modelling. Veh. Syst. Dyn., 2009, 47(11), 1305-1325.
[22]
Nguyen, Q.H.; Choi, S.B. Optimal design of MR shock absorber and application to vehicle suspension. Smart Mater. Struct., 2009, 18(3), 035012.
[23]
Lu, S.B.; Li, Y.N.; Choi, S.B.; Zheng, L.; Seong, M.S. Integrated control on MR vehicle suspension system associated with braking and steering control. Veh. Syst. Dyn., 2011, 49(1-2), 361-380.
[24]
Choi, S.B.; Sung, K.G. Vibration control of magnetorheological damper system subjected to parameter variations. Int. J. Veh. Des., 2008, 46(1), 94-110.
[25]
Milecki, A.; Hauke, M. Application of magnetorheological fluid in industrial shock absorbers. Mech. Syst. Signal Process., 2012, 28, 528-541.
[26]
Dutta, S.; Choi, S.B. Control of a shimmy vibration in vehicle steering system using a magneto-rheological damper. J. Vib. Control, 2018, 24(4), 797-807.
[27]
Sun, S.S.; Ning, D.H.; Yang, J.; Du, H.; Zhang, S.W.; Li, W.H. A seat suspension with a rotary magnetorheological damper for heavy duty vehicles. Smart Mater. Struct., 2016, 25(10), 105032.
[28]
Choi, S.B.; Han, Y.M. MR seat suspension for vibration control of a commercial vehicle. Int. J. Veh. Des., 2003, 31(2), 202-215.
[29]
Phu, D.X.; Quoc Hung, N.; Choi, S.B. A novel adaptive controller featuring inversely fuzzified values with application to vibration control of magneto-rheological seat suspension system. J. Vib. Control, 2018, 24(21), 5000-5018.
[30]
Phu, D.X.; Choi, S.M.; Choi, S.B. A new adaptive hybrid controller for vibration control of a vehicle seat suspension featuring MR damper. J. Vib. Control, 2017, 23(20), 3392-3413.
[31]
Chrzan, M.J.; Carlson, J.D. MR fluid sponge devices and their use in vibration control of washing machines. In:Smart Structures and Materials 2001: Damping and Isolation; International Society for Optics and Photonics, 2001, pp. 370-379.
[32]
Spelta, C.; Previdi, F.; Savaresi, S.M.; Fraternale, G.; Gaudiano, N. Control of magnetorheological dampers for vibration reduction in a washing machine. Mechatronics, 2009, 19(3), 410-421.
[33]
Nguyen, Q.H.; Choi, S.B.; Woo, J.K. Optimal design of magnetorheological fluid-based dampers for front-loaded washing machines. In: Proceedings of the Institution of Mechanical Engineers, Part C. J. Mech. Eng. Sci., 2014, 228(2), 294-306.
[34]
Carlson, J.D.; Matthis, W.; Toscano, J.R. Smart prosthetics based on magnetorheological fluids. In:Smart Structures and Materials 2001: Industrial and Commercial Applications of Smart Structures Technologies; International Society for Optics and Photonics, 2001, pp. 308-317.
[35]
Kim, J.H.; Oh, J.H. Development of an above knee prosthesis using MR damper and leg simulator. In: Robotics and Automation, Proceedings of IEEE International Conference ICRA, 2001, pp. 3686-3691.
[36]
Xie, H.L.; Liang, Z.Z.; Li, F.; Guo, L.X. The knee joint design and control of above-knee intelligent bionic leg based on magneto-rheological damper. Int. J. Automat. Comput., 2010, 7(3), 277-282.
[37]
Zite, J.L.; Ahmadkhanlou, F.; Neelakantan, V.A.; Washington, G.N. A magnetorheological fluid based orthopedic active knee brace. In:Smart Structures and Materials: Industrial and Commercial Applications of Smart Structures Technologies; International Society for Optics and Photonics, 2006, p. 61710H.
[38]
Park, J.; Yoon, G.H.; Kang, J.W.; Choi, S.B. Design and control of a prosthetic leg for above-knee amputees operated in semi-active and active modes. Smart Mater. Struct., 2016, 25(8), 085009.
[39]
Garcia, E.; Arevalo, J.C.; Munoz, G.; Gonzalez-de-Santos, P. On the biomimetic design of agile-robot legs. Sensors, 2011, 11(12), 11305-11334.
[40]
Ha, S.H.; Seong, M.S.; Jeon, J.; Choi, S.B. Dynamic modelling and design of tracked vehicle suspension system using magnetorheological valve. Int. J. Heavy Veh. Syst., 2013, 20(3), 191-208.
[41]
Simon, D.; Ahmadian, M. Vehicle evaluation of the performance of magneto rheological dampers for heavy truck suspensions. J. Vib. Acoust., 2001, 123(3), 365-375.
[43]
Kim, H.C.; Oh, J.S.; Choi, S.B. The field-dependent shock profiles of a magnetorhelogical damper due to high impact: An experimental investigation. Smart Mater. Struct., 2014, 24(2), 025008.
[44]
Oh, J.S.; Lee, T.H.; Choi, S.B. Design and analysis of a new magnetorheological damper for generation of tunable shock-wave profiles. Shock Vib., 2018, 2018, Article ID 8963491.
[45]
Ha, S.H.; Choi, S.B.; Lee, K.S.; Cho, M.W. Ride quality evaluation of railway vehicle suspension system featured by magnetorheological fluid damper. Adv. Sci. Lett., 2012, 12(1), 209-213.
[46]
Kim, H.C.; Shin, Y.J.; You, W.; Jung, K.C.; Oh, J.S.; Choi, S.B. A
ride quality evaluation of a semi-active railway vehicle suspension
system with MR damper: Railway field tests. In: Proceedings of the
Institution of Mechanical Engineers, Part F: J. Rail Rapid Transit.,2017, 231(3), 306-316.
[47]
Oh, J.S.; Shin, Y.J.; Koo, H.W.; Kim, H.C.; Park, J.; Choi, S.B. Vibration control of a semi-active railway vehicle suspension with magneto-rheological dampers. Adv. Mech. Eng., 2016, 8(4), 1687814016643638.
[48]
Kubík, M.; Macháček, O.; Strecker, Z.; Roupec, J.; Mazůrek, I. Design and testing of magnetorheological valve with fast force response time and great dynamic force range. Smart Mater. Struct., 2017, 26(4), 047002.