[1]
Gandhi MV, Thompson BD. Smart Materials and Structures. 1st ed. Chapman & Hall: London 1992.
[2]
Genchi GG, Marino A, Tapeinos C, Ciofani G. Smart materials meet multifunctional biomedical devices: current and prospective implications for nanomedicine. Front Bioeng Biotechnol 2017; 5(80) PMC5741658.
[3]
Lin L, Luo B, Zhong S-S. Development and application of maintenance decision-making support system for aircraft fleet. Adv Eng Softw 2017; 114: 192-207.
[4]
Simha NK, Rama Sreekanth PS, Venkata Siva SB. Shape-Memory Alloys. In: Hashmi S, Ed.Reference Module in Materials Science and Materials Engineering. Oxford: Elsevier 2017; pp. 1-37.
[5]
Marques CAF, Webb DJ, Andre P. Polymer optical fiber (POF) sensors in human life safety. Opt Fiber Technol 2017; 36: 144-54.
[6]
Qiufan Yuan, Yanfang Liu, Naiming Qi Active vibration suppression for maneuvering spacecraft with high flexible appendages. Acta Astronaut 2017; 139: 512-20.
[7]
Ismael Payo, Hale JM. Sensitivity analysis of piezoelectric paint sensors made up of Lead Zirconate Titanate (PZT) ceramic powder and water-based acrylic polymer. Sens Actuators 2011; 168(1): 77-89.
[8]
Kazunori K, Tamura H, Shirakawa Y, Hidaka J. Interfacial sol-gel processing for preparation of porous titania particles using a piezoelectric inkjet nozzle. Chem Eng Res Des 2014; 92(11): 2461-9.
[9]
Li M, Yuan J-X, Guan D, Chen W-M. Application of piezoelectric fiber composite actuator to aircraft wing for aerodynamic performance improvement. Sci China Technol Sci 2011; 54(2): 395-402.
[10]
Gurdal EA, Tuncdemir S, Uchino K, Clive A. Randall. Low temperature co-fired multilayer piezoelectric transformers for high power applications. Mater Des 2017; 132: 512-7.
[11]
Zhu G, Bai P, Chen J, Wang Z-L. Power-generating shoe insole based on triboelectric nanogenerators for self-powered consumer electronics. Nano Energy 2013; 2(5): 688-92.
[12]
Seo Y, Corona D, Hall NA. On the theoretical maximum achievable Signal-to-Noise Ratio (SNR) of piezoelectric microphones. Sens Actuators A Phys 2017; 264: 341-6.
[13]
Psoma SD, Tzanetis P, Tourlidakis A. A practical application of energy harvesting based on piezoelectric technology for charging portable electronic devices. Mater Today Proc 2017; 4(7)Part 1:. : 6771-85.
[14]
Goh GD, Agarwala S, Goh GL, Dikshit V. Additive manufacturing in Unmanned Aerial Vehicles (UAVs). Aerosp Sci Technol 2017; 63: 140-51.
[15]
Cazale A, Sant W, Ginot F, et al. Physiological stress monitoring using sodium ion potentiometric microsensors for sweat analysis. Sens Actuators B Chem 2016; 225: 1-9.
[16]
Suresh Neethirajan. Recent advances in wearable sensors for animal health management. Sens Biosensing Res 2017; 12: 15-29.
[17]
Michael K. Masten, Electronics: The intelligence in intelligent control. Annu Rev Contr 1998; 22: 1-11.
[18]
Morais J, de Morais GP, Santos C, Costab CA, Candeiasb P. Shape memory alloy based dampers for earthquake response mitigation. Procedia Struct Integrity 2017; 5: 705-12.
[19]
Uto K, DeForest CA, Kim DH. Soft shape-memory materials A2. In: Mitsuhiro E, Ed.Biomaterials Nanoarchitectonics. New York: William Andrew Publishing 2016; pp. 237-51.
[20]
Kwon S-C, Jeon Y-H, Oh H-U. Micro-jitter attenuation of spaceborne cooler by using a blade-type hyperelastic shape memory alloy passive isolator. Cryogenics 2017; 87: 35-48.
[21]
Wei Guo. A self-driven temperature and flow rate co-adjustment mechanism based on SMA assembly for an adaptive thermal control cold plate module with on-orbit service characteristics. Appl Therm Eng 2017; 114: 744-55.
[22]
Bernie F. Carpenter, Jerry L Draper, Russell N Gehling. Shape memory alloy controllable hinge apparatus. US6175989B1 2001.
[23]
Mabe J. Hinge apparatus with two-way controllable shape memory alloy (SMA) hinge pin actuator and methods of making two-way SMA parts. US20050198777A1 2005.
[24]
Ruth JSD, Dhanalakshmi K. Shape memory alloy wire for self-sensing servo actuation Systems and Signal Processing. Mech Syst Signal Process 2017; 83: 36-52.
[25]
Danisch LA. Fiber optic bending and positioning sensor WO1994029671A1 1994.
[26]
Mao A, Malone G, Krass RM, et al. 2018.
[27]
Nazir J, Vivek T, Jaisingh T. Temperature stabilization in fibre optic gyroscopes for high altitude aircraft. Optik 2016; 127(20): 9701-10.
[28]
Jin J, Lin S, Ye X. FBG sensor network for pressure localization of spacecraft structure based on distance discriminant analysis. Optik 2014; 125(1): 404-8.
[29]
Michel D, Xiao F, Alameh K. A compact, flexible fiber-optic Surface Plasmon Resonance sensor with changeable sensor chips. Sens Actuators B Chem 2017; 246: 258-61.