[1]
Katritzky, A.R.; Ramsden, C.A.; Joule, J.A.; Zhdankin, V.V. Handbook of Heterocyclic Chemistry; 3rd ed.; Kindle Edition, Elsevier publications,. , 2010.
[2]
Katritzky, A.R.; Lagowski, J.M. The Principles of Heterocyclic Chemistry; New York: Academic Press, 1968.
[3]
Pozharskiĭ, A.F.; Katritzky, A.R.; Soldatenkov, A.T. Heterocycles in life
and society: An introduction to heterocyclic chemistry, biochemistry and applications, Wiley publication. 2011.
[4]
Taylor, A.P.; Robinson, R.P.; Fobian, Y.M.; Blakemore, D.C.; Jones, L.H.; Fadeyi, O. Modern advances in heterocyclic chemistry in drug discovery. Org. Biomol. Chem., 2016, 14, 6611-6637.
[5]
(a)Dua, R.; Shrivastava, S.; Sonwane, S.K.; Srivastava, S.K. Pharmacological significance of synthetic heterocycles scaffold. Adv. Biol. Res., 2011, 5, 120-144.
(b)Tiwari, V.K.; Mishra, B.B.; Mishra, K.B.; Mishra, N.; Singh, A.S.; Chen, X. Cu(I)-catalyzed click reaction in carbohydrate chemistry. Chem. Rev., 2016, 116, 3086-3240.
[6]
Pothiraj, C.; Velan, A.S.; Joseph, J.; Raman, N. Simple method of preparation and characterization of new antifungal active biginelli type heterocyclic compounds. Mycobiology, 2008, 36, 66-69.
[7]
Koci, J.; Klimesova, V.; Waisser, K.; Kaustova, J.; Dahse, H.M.; Mollmann, U. Heterocyclic benzazole derivatives with antimycobacterial in vitro activity. Bioorg. Med. Chem. Lett., 2002, 12, 3275-3278.
[8]
Karnik, A.V.; Malviya, N.J.; Kulkarni, A.M.; Jadhav, B.L. Synthesis and in vitro antibacterial activity of novel heterocyclic derivatives of 18-nor-equilenin. Eur. J. Med. Chem., 2006, 41, 891-895.
[9]
Bedoya, M.; Olmo, E.D.; Sancho, R.; Barboza, B.; Beltran, M.; Garcia-Cadenas, A.E.; Sanchez-Palomino, S.; Lopez-Perez, J.L.; Munoz, E.; Feliciano, A.S.; Alcami, J. Anti-HIV activity of stilbene-related heterocyclic compounds. Bioorg. Med. Chem. Lett., 2006, 16, 4075-4079.
[10]
Sunduru, N.; Agarwal, A.; Katiyar, S.B.N.; Goyal, N.; Gupta, S.; Chauhan, P.M.S. Synthesis of 2,4,6-trisubstituted pyrimidine and triazine heterocycles as antileishmanial agents. Bioorg. Med. Chem., 2006, 14, 7706-7715.
[11]
Durling, L.J.; Abramsson-Zetterberg, L. A comparison of genotoxicity between three common heterocyclic amines and acrylamide. Mutat. Res., 2005, 580, 103-110.
[12]
Stewart, M.L.; Bueno, G.J.; Baliani, A.; Klenke, B.; Brun, R.; Brock, J.M.; Gilbert, I.H.; Barrett, M.P. Trypanocidal activity of melamine-based nitroheterocycles. Antimicrob. Agents Chemother., 2004, 48, 1733-1738.
[13]
Dominguez, J.N.; Leon, C.; Rodrigues, J.; Dominguez, N.G.; Gut, J.; Rosenthal, P.J. Synthesis and antimalarial activity of sulfonamide chalcone derivatives. Farmaco, 2005, 60, 307-311.
[14]
Ke, S.Y.; Xue, S.J. Synthesis and herbicidal activity of N-(o-fluorophenoxyacetyl) thioureas derivatives and related fused heterocyclic compounds. ARKIVOC, 2006, X, 63-68.
[15]
Malhotra, S.; Shakya, G.; Kumar, A.; Vanhoecke, B.W.; Cholli, A.L.; Raj, H.G.; Saso, L.; Ghosh, B.; Bracke, M.E.; Prasad, A.K.; Biswal, S.; Parmar, V.S. Antioxidant, anti-inflammatory and antiinvasive activities of biopolyphenolics. ARKIVOC, 2008, VI, 119-139.
[16]
Gavaghan, A.D.; Nunn, A.J. Some heterocyclic quaternary salts of potential anthelmintic activity. Pharm. Acta Helv., 1971, 46, 413-419.
[17]
Paruszewski, R.; Strupinska, M.; Rostafinska-Suchar, G.; Stables, J.P. Anticonvulsant activity of benzylamides of some amino acids and heterocyclic acids. Protein Pept. Lett., 2003, 10, 475-482.
[18]
Yousef, T.A.; Badria, F.A.; Ghazy, S.; El-Gammal, O.A.; El-Reash, G.M.A. In vitro and in vivo antitumor activity of some synthesized 4-(2-pyridyl)-3-thiosemicarbazides derivatives. J. Med. Med. Sci., 2011, 3, 37-46.
[19]
Abignente, E.; Sacchi, A.; Laneri, S.; Rossi, F.; Amico, M.D.; Berrino, L.; Calderaro, V.; Parrillo, C. Research on heterocyclic compounds. XXXII. Synthesis and cyclooxygenase-independent anti-inflammatory and analgesic activity of imidazo[1,2-a] pyrimidine derivatives. Eur. J. Med. Chem., 1994, 29, 279-286.
[20]
Elmegeed, G.A.; Baiuomy, A.R.; Abdelhalim, M.M.; Hana, H.Y. Synthesis and antidepressant evaluation of five novel heterocyclic tryptophan-hybrid derivatives. Arch. Pharm., 2010, 343, 261-267.
[21]
Darias, V.; Abdala, S.; Martin-Herrera, D.; Tello, M.L.; Vega, S. CNS effects of a series of 1,2,4-triazolyl heterocarboxylic derivatives. Pharmazie, 1998, 53, 477-481.
[22]
Valverde, M.G.; Torroba, T. Special issue: Sulfur-nitrogen heterocycles molecules. Molecules, 2005, 10, 318-320.
[23]
V.K., Tiwari B.B. Mishra. Opportunity, Challenge and Scope of Natural Products in Medicinal Chemistry. Eds.; Trivandrum, Kerala,; Research Signpost: India, 2011.
[24]
Mishra, B.B.; Tiwari, V.K. Natural products: An evolving role in future drug discovery. Eur. J. Med. Chem., 2011, 46, 4769-4807.
[25]
Mishra, S.; Tripathi, N.; Mishra, S.; Kishore, N.; Singh, R.K.; Tiwari, V.K. Fighting against Tuberculosis: Impact of alkaloids. Eur. J. Med. Chem., 2017, 137, 504-554.
[26]
Liu, K.K-C.; Sakya, S.M.; O’Donnell, C.J.; Li, J. Synthetic approaches to the 2007 New Drugs. Mini Rev. Med. Chem., 2008, 8, 1526-1548.
[27]
Liu, K.K.C.; Sakya, S.M.; O’Donnell, C.J.; Li, J. Synthetic approaches to the 2008 New Drugs. Mini Rev. Med. Chem., 2009, 9, 1655-1675.
[28]
Liu, K.K.C.; Sakya, S.M.; O’Donnell, C.J.; Flick, A.C.; Li, J. Synthetic approaches to the 2009 new drugs. Bioorg. Med. Chem., 2011, 19, 1136-1154.
[29]
Liu, K.K.C.; Sakya, S.M.; O’Donnell, C.J.; Flick, A.C.; Ding, H.X. Synthetic approaches tothe 2010 New Drugs. Bioorg. Med. Chem., 2012, 20, 1155-1174.
[30]
Ding, H.X.; Liu, K.K.; Sakya, S.M.; Flick, A.C.; O’Donnell, C.J. Synthetic approaches to the 2011 new drugs. Bioorg. Med. Chem., 2013, 21, 2795-2825.
[31]
Ding, H.X.; Leverett, C.A.; Kyne, Jr, R.E.; Liu, K.K.; Sakya, S.M.; Flick, A.C.; O’Donnell, C.J. Synthetic approaches to the 2012 new drugs. Bioorg. Med. Chem., 2014, 22, 2005-2032.
[32]
Ding, H.X.; Leverett, C.A.; Kyne, Jr, R.E.; Liu, K.K.; Fink, S.J.; Flick, A.C.; O’Donnell, C.J. Synthetic approaches to the 2013 new drugs. Bioorg. Med. Chem., 2015, 23, 1895-1922.
[33]
Flick, A.C.; Ding, H.X.; Leverett, C.A.; Kyne, Jr, R.E.; Liu, K.K.; Fink, S.J.; O’Donnell, C.J. Synthetic Approaches to the 2014 new drugs. Bioorg. Med. Chem., 2016, 24, 1937-1980.
[34]
Lick, A.C.; Ding, H.X.; Leverett, C.A.; Kyne, R.E.; Liu, K.K.C.; Fink, S.J.; O’Donnell, C.J. Synthetic approaches to the new drugs approved during 2015. J. Med. Chem., 2017, 60, 6480-6515.
[35]
Flick, A.C.; Ding, H.X.; Leverett, C.A.; Fink, S.J.; O’Donnell, C.J. Synthetic approaches to new drugs approved during 2016. J. Med. Chem., 2018, 61, 7004-7031.
[36]
Raju, T.N.K. The Nobel Chronicles. 1988: James Whyte Black, (b 1924), Gertrude Elion (1918−99), George H Hitchings (1905-1998). Lancet, 2000, 355, 1022.
[37]
Park, K.H.; Kurth, M.J. Cyclo-elimination release strategies applied to solid phase organic synthesis in drug discovery. Drugs Future, 2000, 25, 1265-1294.
[38]
Mishra, B.B.; Kumar, D.; Mishra, A.; Mohapatra, P.P.; Tiwari, V.K. Cyclorelease strategy in solid phase combinatorial synthesis of heterocyclic skeletons. Adv. Heterocycl. Chem., 2012, 107, 41-99.
[39]
Kumar, D.; Kushwaha, D.; Mishra, B.B.; Tiwari, V.K. Impact of solid-supported cyclization-elimination strategies towards the natural product inspired molecules in drug research. inBioactive Natural Products; G., Brahmachari, Ed.; Taylor & Francis, 2012, pp. 9-30.
[40]
(a)James, I.W. Linkers for solid phase organic synthesis. Tetrahedron, 1999, 55, 4855-4946.
(b)Timmer, M.S.M.; Verhelst, S.H.L.; Grotenbreg, G.M.; Overhand, M.; Overkleeft, H.S. Carbohydrates as versatile platforms in theconstruction of small compound libraries. Pure Appl. Chem., 2005, 77, 1173-1181.
[41]
Hogo, H.; Nakahara, Y. Recent progress in the solid-phase synthesis of glycopeptides. Curr. Protein Pept. Sci., 2000, 1, 23-48.
[42]
Abreu, P.M.; Branco, P.S. Natural product-like combinatorial libraries. J. Braz. Chem. Soc., 2003, 14, 675-712.
[43]
Gordon, K.; Balasubramanian, S. Solid phase synthesis-designer linkers for combinatorial chemistry: A review. J. Chem. Technol. Biotechnol., 1999, 74, 835-851.
[44]
Cho, C.Y.; Moran, E.J.; Cherry, S.R.; Stephans, J.C.; Fodor, S.P.A.; Adams, C.L.; Sundaram, A.; Jacobs, J.W.; Schultz, P.G. An unnatural biopolymer. Science, 1993, 261, 1303-1305.
[45]
Gennari, C.; Salom, B.; Potenza, D.; Williams, A. Synthesis of sulfonamido pseudopeptides: New chiral unnatural oligomers. Angew. Chem. Int. Ed., 1994, 33, 2067-2069.
[46]
Gennari, C.; Nestler, H.P.; Salom, B.; Still, W.C. Solid phase synthesis of vinylogous sulfonyl peptides. Angew. Chem. Int. Ed., 1995, 34, 1763-1765.
[47]
Simon, R.J.; Kania, R.S.; Zuckermann, R.N.; Huebner, V.D.; Jewell, D.A.; Banville, S.; Ng, S.; Wang, L.; Rosenberg, S.; Marlowe, C.K.; Spellmeyer, D.C.; Tan, R.Y.; Frankel, A.D.; Santi, D.V.; Cohen, F.E.; Bartlett, P.A. Peptoids: A modular approach to drug discovery. Proc. Natl. Acad. Sci. USA, 1992, 89, 9367-9371.
[48]
Bunin, B.A.; Ellman, J.A. A general and expedient method for the solid phase synthesis of 1,4-benzodiazepine derivatives. J. Am. Chem. Soc., 1992, 114, 10997-10998.
[49]
Sammelson, R.E.; Kurth, M.J. Carbon-carbon bond-forming solid phase reactions. Part II. Chem. Rev., 2001, 101, 137-202.
[50]
Mishra, R.C.; Tewari, N.; Arora, K.; Ahmad, R.; Tripathi, R.P.; Tiwari, V.K.; Walter, R.D. srivastava, A.K. DBU-Assisted cyclorelease elimination: combinatorial synthesis and γ- glutamyl cysteine synthetase and glutathione-s-transeferase modulatory effect of c-nucleoside analogs. Comb. Chem. High Throughput Screen., 2003, 6, 37-50.
[51]
Porta, E.L.; Piarulli, U.; Cardullo, F.; Paio, A.; Provera, S.; Seneci, P.; Gennari, C. Cyclative cleavage via solid phase supported stabilized sulfur ylides: Synthesis of macrocyclic lactones. Tetrahedron Lett., 2002, 43, 761-766.
[52]
Mishra, B.B.; Kumar, D.; Singh, A.S.; Tripathi, R.P.; Tiwari, V.K. Ionic
liquids-prompted synthesis of biologically relevant five- and six-membered
heterocyclic skeletons: An update, in Green Synthetic Approaches for Biologically
Relevant Heterocycles, Elsevier Publication, ed.; G. Brahmachari:
2014, pp 1-57.
[53]
Beebe, X.; Schore, N.E.; Kurth, M.J. Polymer-supported synthesis of 2,5-disubstituted tetrahydrofurans. J. Am. Chem. Soc., 1992, 114, 10061-10062.
[54]
Gowravaram, M.R.; Gallop, M.A. “Traceless” solid phase synthesis of furans via 1,3-dipolar cycloaddition reactions of isomünchnones. Tetrahedron Lett., 1997, 38, 6973-6976.
[55]
Barn, D.R.; Morphy, J.R. Solid phase synthesis of cyclic imides. J. Comb. Chem., 1999, 1, 151-156.
[56]
Romoff, T.T.; Ma, L.; Wang, Y.; Campbell, D.A. Solid phase synthesis of 3-acyl-2,4-pyrrolidinediones (3-acyl tetramic acids) via mild cyclative cleavage. Synlett, 1998, 12, 1341-1342.
[57]
Kulkarni, B.A.; Ganesan, A. Solid phase synthesis of tetramic acids. Tetrahedron Lett., 1998, 39, 4369-4372.
[58]
Mattews, J.; Rivero, R.A. Solid phase synthesis of substituted tetramic acids. J. Org. Chem., 1998, 63, 4808-4810.
[59]
Anzini, M.; Cappelli, A.; Vomero, S.; Giorgi, G.; Langer, T.; Bruni, G.; Romeo, M.R.; Basile, A.S. Molecular basis of peripheral vs central benzodiazepine receptor selectivity in a new class of peripheral benzodiazepine receptor ligands related to alpidem. J. Med. Chem., 1996, 39, 4275-4284.
[60]
Bhandari, A.; Li, B.; Gallop, M. Solid phase synthesis of pyrrolo [3,4-b] pyridines and related pyridine-fused heterocycles. Synthesis, 1999, 11, 1951-1960.
[61]
Luca, L.D.; Giacomelli, G.; Nieddu, G. Synthesis of substituted benzofurans via microwave-enhanced catch and release strategy. J. Comb. Chem., 2008, 10, 517-520.
[62]
Frigola, J.; Colombo, A.; Pares, J.; Martinez, L.; Sagarra, R.; Roster, R. Synthesis, structure and inhibitory effects on cyclooxygenase, lipoxygenase, thromboxane synthetase and platelet aggregation of 3-amino-4,5-dihydro-1H-pyrazole derivatives. Eur. J. Med. Chem., 1989, 24, 435-445.
[63]
Groutas, W.C.; Venkataman, R.; Chong, L.S.; Yoder, J.E.; Epp, J.B.; Stanga, M.A.; Kim, E. Isoxazoline derivatives as potential inhibitors of the proteolytic enzymes human leukocyte elastase, cathepsin g and proteinase 3: A structure--activity relationship study. Bioorg. Med. Chem., 1995, 3, 125-128.
[64]
Dorlars, A.; Schellhammer, C.W.; Schroeder, J. Heterocycles as structural units in new optical brighteners. Angew. Chem. Int. Ed., 1975, 14, 665-679.
[65]
Silva, A.P.; Gunaratne, H.Q.N.; Gunnlaugsson, T.; Nieuwenhuizen, M. Fluorescent switches with high selectivity towards sodium ions: Correlation of ion-induced conformation switching with fluorescence function. Chem. Commun., 1996, 1967-1968.
[66]
Kozikowski, A.P. The isoxazoline route to the molecules of nature. Acc. Chem. Res., 1984, 17, 410-416.
[67]
Chen, Y.; Lam, Y.; Lai, Y.H. Solid phase synthesis of pyrazolines and isoxazolines with sodium benzenesulfinate as a traceless linker. Org. Lett., 2003, 5, 1067-1069.
[68]
Luca, L.D.; Giacomelli, G.; Porcheddu, A.; Salaris, M.; Taddei, M. Cellulose beads: A new versatile solid-support for microwaveassisted synthesis. preparation of pyrazole and isoxazole libraries. J. Comb. Chem., 2003, 5, 465-471.
[69]
Hofreiter, M.; Serre, D.; Poinar, H.N.; Kuch, M.; Pääbo, S. Ancient DNA. Nat. Rev. Genet., 2001, 2, 353-359.
[70]
Sim, M.M.; Ganesan, A. Solution-phase synthesis of a combinatorial thiohydantoin library. J. Org. Chem., 1997, 62, 3230-3225.
[71]
Scicinski, J.J.; Barker, M.D.; Murray, P.J.; Jarvie, E.M. The solid phase syntheses of a series of tri-substituted hydantoin ligands for the somatostatin SST5 receptor. Bioorg. Med. Chem. Lett., 1998, 8, 3609-3614.
[72]
Dressman, B.A.; Spangle, L.A.; Kaldor, S.W. Solid phase synthesis of hydantoins using a carbamate linker and a novel cyclization / cleavage step. Tetrahedron Lett., 1996, 37, 937-940.
[73]
Hanessian, S.; Yang, R.Y. Solution and solid phase synthesis of 5-alkoxyhydantoin libraries with a three-fold functional diversity. Tetrahedron Lett., 1996, 37, 5835-5838.
[74]
Stadlwieser, J.; Ellmerer-Muller, E.P.; Tako, A.; Maslouh, N.; Bannwarth, W. Combinatorial solid phase synthesis of structurally complex thiazolylhydantoines. Angew. Chem. Int. Ed., 1998, 37, 1402-1404.
[75]
Kim, S.W.; Ahn, S.Y.; Koh, J.S.; Lee, J.H.; Seonggu, R.; Cho, H.Y. Solid phase synthesis of hydantoin library using a novel cyclization and traceless cleavage step. Tetrahedron Lett., 1997, 38, 4603-4606.
[76]
Lee, S.H.; Chung, S.H.; Lee, Y.S. Preparation of resin-bound ketimines via transimination and its application in the synthesis of hydantoin libraries. Tetrahedron Lett., 1998, 39, 9469-9472.
[77]
Mattews, J.; Rivero, R.A. Base-promoted solid phase synthesis of substituted hydantoins and thiohydantoins. J. Org. Chem., 1997, 62, 6090-6092.
[78]
Lin, M.J.; Sun, C.M. Microwave-assisted traceless synthesis of thiohydantoin. Tetrahedron Lett., 2003, 44, 8739-8742.
[79]
Park, K.H.; Kurth, M.J. An uncatalyzed cyclo-elimination process for the release of N3-alkylated hydantoins from solid phase: synthesis of novel isoxazoloimidazolidinediones. Tetrahedron Lett., 1999, 40, 5841-5844.
[80]
Park, K.H.; Kurth, M.J. Solid phase synthesis of novel heterocycles containing thiohydantoin and isoxazole rings. J. Org. Chem., 1999, 64, 9297-9300.
[81]
Roger, C.; Roberts, J.A.; Muller, L. Clinical pharmacokinetics and pharmacodynamics of oxazolidinones. Clin. Pharmacokinet., 2018, 57, 559-575.
[82]
Mishra, K.B.; Agrihari, A.K.; Tiwari, V.K. One-Pot facile synthesis of carbohydrate derived oxazolodine-2-thiones from sugar azido alcohols. Carbohydr. Res., 2017, 450, 1-9.
[83]
Kifli, N.; Htar, T.T.; De Clercq, E.; Balzarini, J.; Simons, C. Bioorg. Med. Chem., 2004, 12, 3247-3257.
[84]
Holte, P.; Thijs, L.; Zwanenburg, B. Solid phase synthesis of 3,5-disubstituted 1,3-oxazolidin-2-ones by an activation/cyclo-elimination process. Tetrahedron Lett., 1998, 39, 7407-7410.
[85]
Buchstaller, H.P. Solid phase synthesis of oxazolidinones via a novel Cyclisation/Cleavage reaction. Tetrahedron, 1998, 54, 3465-3470.
[86]
Tietze, L.F.; Steinmetz, A. A General and expedient method for the solid phase synthesis of structurally diverse 1-Phenylpyrazolone derivatives. Synlett, 1996, 667-668.
[87]
Lepore, S.D.; Wiley, M.R. Studies on the synthetic compatibility of aryloxime linkers in the solid phase synthesis of 3-Aminobenzisoxazoles. J. Org. Chem., 2000, 65, 2924-2932.
[88]
Boldi, A.M.; Johnson, C.R.; Eissa, H.O. Solid phase library synthesis of triazolopyridazines via [4+2] cyeloadditions. Tetrahedron Lett., 1999, 40, 619-622.
[89]
Kolb, V.M.; Dworkin, J.P.; Miller, S.L. Alternative bases in the RNA world: The prebiotic synthesis of urazole and its ribosides. J. Mol. Evol., 1994, 38, 549-557.
[90]
Park, K.H.; Cox, L.J. Solid phase synthesis of 1,2,4-triazolidine-3,5-diones. Tetrahedron Lett., 2002, 43, 3899-3901.
[91]
Miyaura, N.; Suzuki, A. Palladium-catalyzed cross-coupling reactions of organoboron compounds. Chem. Rev., 1995, 95, 2457-2483.
[92]
Phoon, C.W.; Sim, M.M. Solid phase syntheses of 1,2,4-trisubstituted urazole and thiourazole derivatives. J. Comb. Chem., 2002, 4, 491-495.
[93]
Hu, Y.; Baudart, S.; Porco, J.A. Parallel synthesis of 1,2,3- thiadiazoles employing a “catch and release” strategy. J. Org. Chem., 1999, 64, 1049-1051.
[94]
Thomas, E.W.; Nishizawa, E.E.; Zimmermann, D.C.; Williams, D.J. Synthesis and platelet aggregation inhibitory activity of 4,5-bis(substituted)-1,2,3-thiadiazoles. J. Med. Chem., 1985, 28, 442-446.
[95]
Jagtap, S. Heck reaction-State of the Art. Catalysts, 2017, 7, 267-320.
[96]
Kondo, Y.; Inamoto, K.; Sakamoto, T. Photoinduced cyclorelease for condensed heteroaromatic synthesis. J. Comb. Chem., 2000, 2, 232-233.
[97]
McCormick, J.L.; McKee, T.C.; Cardellina, J.H., II; Boyd, M.R. J. Nat. Prod., 1996, 59, 469-471.
[98]
DeVita, R.J.; Goulet, M.T.; Wyvratt, M.J.; Fisher, M.H.; Lo, J.L.; Yang, Y.T.; Cheng, K.; Smith, R.G. Bioorg. Med. Chem. Lett., 1999, 9, 2621-2624.
[99]
Rowley, M.; Kulagowski, J.J.; Watt, A.P.; Rathbone, D.; Stevenson, G.I.; Carling, R.W.; Baker, R.; Marshall, G.R.; Kemp, J.A.; Foster, A.C.; Grimwood, S.; Hargreaves, R.; Hurley, C.; Saywell, K.L.; Tricklebank, M.D.; Leeson, P.D. J. Med. Chem., 1997, 40, 4053-4068.
[100]
Sherlock, M.H.; Kaminski, J.J.; Tom, W.C.; Lee, J.F.; Wong, S.C.; Kreutner, W.; Bryant, R.W.; McPhail, A.T. J. Med. Chem., 1988, 31, 2108-2121.
[101]
Sim, M.M.; Lee, C.L.; Ganesan, A. Solid phase combinatorial synthesis of 4-hydroxyquinolin-2(1H)-ones. Tetrahedron Lett., 1998, 39, 6399-6402.
[102]
Liu, Y.; Mills, A.D.; Kurth, M.J. Solid phase synthesis of 3-(5-arylpyridin-2-yl)-4-hydroxycoumarins. Tetrahedron Lett., 2006, 47, 1985-1988.
[103]
Hong, B.C.; Chen, Z.Y.; Chen, W.H. Traceless Solid phase synthesis of heterosteroid framework. Org. Lett., 2000, 2, 2647-2649.
[104]
Szardenings, A.K.; Burkoth, T.S.; Lu, H.H.; Tien, D.W.; Campbell, D.A. A simple procedure for the solid phase synthesis of diketopiperazine and diketomorpholine derivatives. Tetrahedron, 1997, 53, 6573-6593.
[105]
Gordon, D.W.; Stille, J. Reductive alkylation on a solid phase: Synthesis of a piperazinedione combinatorial library. Bioorg. Med. Chem. Lett., 1995, 5, 47-50.
[106]
Iyer, M.S.; Gigstad, K.M.; Namdev, N.D.; Lipton, M.A. Asymmetric catalysis of the strecker amino acid synthesis by a cyclic dipeptide. J. Am. Chem. Soc., 1996, 118, 4910-4911.
[107]
Kowalski, J.; Lipton, M.A. Solid phase synthesis of a diketopiperazine catalyst containing the unnatural amino acid (S)-Norarginine. Tetrahedron Lett., 1996, 37, 5839-5840.
[108]
Mhaske, S.B.; Argade, N.P. The chemistry of recently isolated naturally occurring quinazolinone alkaloids. Tetrahedron, 2006, 62, 9787.
[109]
Smith, A.L.; Thomson, C.G.; Leeson, P.D. An efficient solid phase synthetic route to 1,3-disubstituted 2,4(1H,3H)-quinazolinediones suitable for combinatorial synthesis. Bioorg. Med. Chem. Lett., 1996, 6, 1483-1486.
[110]
Berst, F.; Holmes, A.B.; Ladlow, M.; Murray, P.J. A latent aryl hydrazine ‘safety-catch’ linker compatible with N-alkylation. Tetrahedron Lett., 2000, 41, 6649-6653.
[111]
Wang, H.; Ganesan, A. Total synthesis of the fumiquinazoline alkaloids: Solid phase studies. J. Comb. Chem., 2000, 2, 186-194.
[112]
Tiwari, V.K.; Mishra, R.C.; Sharma, A.; Tripathi, R.P. Carbohydrate-based potential chemotherapeutic agents: Recent developments and their scope in future drug discovery. Mini Rev. Med. Chem., 2012, 12, 1497-1519.
[113]
Mishra, S.; Upadhayay, K.; Mishra, K.B.; Tripathi, R.P.; Tiwari, V.K. Carbohydrate-based Chemotherepeutics: A frontier in drug discovery and development. Studies Nat. Prod. Chem., 2016, 49, 307-361.
[114]
Burchenal, J.H.; Ciovacco, K.; Kalaher, K.; O’Toole, T.; Kiefner, R.; Dowling, M.D.; Chu, C.K.; Watanabe, K.A.; Wempen, I.; Fox, J.J. Antileukemic effects of pseudoisocytidine, a new synthetic pyrimidine C-Nucleoside. Cancer Res., 1976, 36, 1520-1523.
[115]
Schaeffer, H.J.; Beauchamp, L.; De-Miranda, P.; Elion, G.B.; Bauer, D.J.; Collins, P. 9-(2-Hydroxyethoxymethyl) guanine activity against viruses of the herpes group. Nature, 1978, 272, 583-585.
[116]
Cai, D.M.; Li, M.J.; Li, D.L.; You, T.P. Synthesis of C-Nucleoside analogues: 2-[2-(Hydroxymethyl)-1,3-dioxolan-5-yl]1, 3-thiazole-4-carboxamide and 2-[2-(Mercaptometh- yl)-1, 3-dioxolan-5-yl] 1, 3-thiazole-4-carboxamide. Chin. Chem. Lett., 2004, 15, 163-166.
[117]
Tripathi, R.P.; Tiwari, V.K.; Mishra, R.C.; Srivastava, R.; Srivastava, S.; Srivastava, K.K.; Srivastava, B.S. Solid phase combinatorial synthesis of carbohydrate-containing ureas with four point diversity. Trends Carbohydr. Res., 2012, 4(3), 28-44.
[118]
Tewari, N.; Mishra, R.C.; Tiwari, V.K.; Tripathi, R.P. DBU/TBAB/4A0 catalysed cyclatic amidation reactions: A highly efficient & convenient synthesis of C-Nucleosides. Synlett, 2002, 11, 1779-1782.
[119]
Tewari, N.; Tiwari, V.K.; Mishra, R.C.; Tripathi, R.P.; Srivastava, A.K.; Ahmad, R.; Srivastava, R.; Srivastava, B.S. Synthesis and bioevaluation of glycosyl ureas as α-glucosidase inhibitors and their effect on Mycobacterium. Bioorg. Med. Chem., 2003, 11, 2911-2922.
[120]
Schmidt, R.R.; Kinzy, W. Anomeric-oxygen activation for glycoside synthesis: The trichloroacetimidate method. Adv. Carbohydr. Chem. Biochem., 1994, 50, 21-123.
[121]
Zhu, X.; Schmidt, R.R. New principles for glycoside-bond formation. Angew. Chem. Int. Ed., 2009, 48, 1900-1935.
[122]
Ito, Y.; Manabe, S. Solid phase oligosaccharide synthesis and related technologies. Curr. Opin. Chem. Biol., 1998, 2, 701-708.
[123]
Manabe, S.; Nakahara, Y.; Ito, Y. Novel nitro wang type linker for polymer support oligosaccharide synthesis; Polymer supported acceptor. Synlett, 2000, 9, 1241-1244.
[124]
Ghosh, S.; Ghosh, S.; Sarkar, N. Factors influencing ring closure through olefin metathesis-A perspective. J. Chem. Sci., 2006, 118, 223-235.
[125]
Grubbs, R.H.; Chang, S. Recent advances in olefin metathesis and its application in organic synthesis. Tetrahedron, 1998, 54, 4413-4450.
[126]
Piscopio, A.D.; Miller, J.F.; Koch, K. Ring closing metathesis in organic synthesis: Evolution of a high speed, solid phase method for the preparation of β-Turn mimetics. Tetrahedron, 1999, 55, 8189-8198.
[127]
Piscopio, A.D.; Miller, J.F.; Koch, K. A second generation solid phase approach to freidinger lactams: Application of Fukuyama’s amine synthesis and cyclative release via ring closing metathesis. Tetrahedron Lett., 1998, 39, 2667-2670.
[128]
Perdih, A.; Kikelj, D. The application of freidinger lactams and their analogs in the design of conformationally constrained peptidomimetics. Curr. Med. Chem., 2006, 13, 1525-1556.
[129]
Piscopio, A.D.; Miller, J.F.; Koch, K. Solid phase heterocyclic synthesis via ring closing metathesis: traceless linking and cyclative cleavage through a carbon-carbon double bond. Tetrahedron Lett., 1997, 38, 7143-7146.
[130]
Maarseveen, J.H.; Hartog, J.A.J.; Engelen, V.; Finner, E.; Visser, G.; Kruse, C.G. Solid phase ring-closing metathesis: Cyclization/cleavage approach towards a seven membered cycloolefin. Tetrahedron Lett., 1996, 37, 8249-8252.
[131]
Brown, R.C.D.; Castro, L.; Moriggi, J.D. Solid phase synthesis of cyclic sulfonamides employing a ring-closing metathesis-cleavage strategy. Tetrahedron Lett., 2000, 41, 3681-3685.
[132]
Shorter, E. Benzodiazepines: A Historical Dictionary of Psychiatry; Oxford University Press, 2005, p. 41.
[133]
Sternbach, L.H. The benzodiazepine story. J. Med. Chem., 1979, 22, 1-7.
[134]
DeWitt, S.H.; Kiely, J.S.; Stankovic, C.J.; Schroeder, M.C.; Cody, D.M.R.; Pavia, M.R. “Diversomers”: An approach to nonpeptide, nonoligomeric chemical diversity. Proc. Natl. Acad. Sci. USA, 1993, 90, 6909-6913.
[135]
Kremen, F.; Gazvoda, M.; Kafka, S.; Proisl, K.; Srholcová, A.; Klásek, A.; Urankar, D.; Košmrlj, J. J. Org. Chem., 2017, 82, 715-722.
[136]
Mayer, J.P.; Zhang, J.; Bjergarde, K.; Lenz, D.M.; Gaudino, J.J. Solid phase synthesis of 1,4-Benzodiazepine-2,5-diones. Tetrahedron Lett., 1996, 37, 8081-8084.
[137]
Park, K.H.; Olmstead, M.M.; Kurth, M.J. Diastereoselective solid phase synthesis of novel hydantoin and isoxazoline-containing heterocycles. J. Org. Chem., 1998, 63, 6579-6585.
[138]
Velter, I.; Ferla, B.L.; Nicotra, F. Carbohydrate based molecular scaffolding. J. Carbohydr. Chem., 2006, 25, 97-138.
[139]
Duffy, R.A.; Morgan, C.; Naylor, R.; Higgins, G.A.; Varty, G.B.; Lachowicz, J.E.; Parker, E.M. Rolapitant (SCH 619734): A potent, selective and orally active neurokinin NK1 receptor antagonist with centrally-mediated antiemetic effects in ferrets. Pharmacol. Biochem. Behav., 2012, 102, 95-100.
[140]
Lewis, J.G.; Bartlett, P.A. Amino acid-derived heterocycles as combinatorial library targets: Bicyclic aminal lactones. J. Comb. Chem., 2003, 5, 278-284.
[141]
Li, Y.; Giulianotti, M.; Houghten, R.A. High throughput synthesis of 2,3,6-trisubstituted-5,6-dihydroimidazo[2,1-b] thiazole derivatives. Tetrahedron Lett., 2011, 52, 696-698.
[142]
Grover, R.K.; Kesarwani, A.P.; Srivastava, G.K.; Kundu, B.; Roy, R. Base catalyzed intramolecular transamidation of2-aminoquinazoline derivatives on solid phase. Tetrahedron, 2005, 61, 5011-5018.
[143]
Kesarwani, A.P.; Grover, R.K.; Kundu, B. Solid phase synthesis of imidazoquinazolinone derivatives withthree-point diversity. Tetrahedron, 2005, 61, 629-635.
[144]
Pérez, R.; Beryozkina, T.; Zbruyev, O.I.; Haas, W.; Kappe, C.O. Traceless Solid phase synthesis of bicyclic dihydropyrimidones using multidirectional cyclization cleavage. J. Comb. Chem., 2002, 4, 501-510.
[145]
Myers, A.G.; Lanman, B.A. A solid-supported, enantioselective synthesis suitable for the rapid preparation of large numbers of diverse structural analogues of (-)-saframycin. J. Am. Chem. Soc., 2002, 124, 12969-12971.
[146]
Vézina, C.; Kudelski, A.; Sehgal, S.N. Rapamycin (AY-22,989), a new antifungal antibiotic. I. Taxonomy of the producing streptomycete and isolation of the active principle. J. Antibiot., 1975, 28, 721-726.
[147]
Höfle, G.; Bedorf, N.; Steinmetz, H.; Schomburg, D.; Gerth, K.; Reichenbach, H. Epothilone A and B-Novel 16‐Membered macrolides with cytotoxic activity: Isolation, crystal structure, and conformation in solution. Angew. Chem. Int. Ed. Engl., 1996, 35, 1567-1569.
[148]
McGuire, J.M.; Bunch, R.L.; Anderson, R.C.; Boaz, H.E.; Flynn, E.H.; Powell, H.M.; Smith, J.W. Ilotycin, a new antibiotic. Antibiot. Chemother., 1952, 2, 281-283.
[149]
Nicolaou, K.C.; Daines, R.A.; Chakraborty, T.K.; Ogawa, Y. Total synthesis of amphotericin B. J. Am. Chem. Soc., 1987, 109, 2821-2822.
[150]
Wessjohann, L.A.; Ruijter, E. Strategies for total and diversity-oriented synthesis of natural product (-like) macrocycles. Top. Curr. Chem., 2005, 243, 137-184.
[151]
Goodin, S.; Kane, M.P.; Rubin, E.H. Epothilones: Mechanism of action and biologic activity. J. Clin. Oncol., 2004, 22, 2015-2205.
[152]
Regueiro-Ren, A.; Borzilleri, R.M.; Zheng, X.; Kim, S.H.; Johnson, J.A.; Fairchild, C.R.; Lee, F.Y.F.; Long, B.H.; Vite, G.D. Synthesis and biological activity of novel epothilone aziridines. Org. Lett., 2001, 3, 2693-2696.
[153]
Nicolaou, K.C.; Winssinger, N.; Pastor, J.; Ninkovic, S.; Sarabia, F.; He, Y.; Vourloumis, D.; Yang, Z.; Li, T.; Giannakakou, P.; Hamel, E. Synthesis of epothilones A and B in solid and solution phase. Nature, 1997, 387, 268-272.
[154]
Dowd, P.; Choi, S.C. Homologation of large ringd. Tetrahedron, 1992, 48, 4773-4792.
[155]
Takahashi, T.; Machida, K.; Kido, Y.; Nagashima, K.; Ebata, S.; Doi, T. Hydroformylation of ω-fnctionalized 1,1-disubstituted alkenes and its use toward the synthesis of (±) muscone. Chem. Lett., 1997, 26, 1291-1992.
[156]
Krishnaswamy, N.R.; Sundaresan, C.N. Fascinating organic molecules from nature (series) 6. Sweet stimulants of the olfactory nerves - Muscone, civetone and related compounds; Resonance, 2013, pp. 673-683.
[157]
Lin, D.L.; Chang, H.C.; Huang, S.H. Characterization of alegedly musk-containing medicinal products in Taiwan. J. Forensic Sci., 2004, 49, 1187-1193.
[158]
Nicolaou, K.C.; Pastor, J.; Winssinger, N.; Murphy, F. Solid phase synthesis of macrocycles by an intramolecular ketophosphonate reaction. synthesis of a (dl)-muscone library. J. Am. Chem. Soc., 1998, 120, 5132-5133.
[159]
Matthew, A.J.D.; Pattenden, G. The intramolecular Stille reaction. J. Chem. Soc., Perkin Trans., 1999, 1, 1235-1246.
[160]
Nicolaou, K.C.; Winssinger, N.; Pastor, J.; Murphy, F. Solid phase synthesis of macrocyclic systems by a cyclorelease strategy: Application of the stille coupling to a synthesis of (S)-Zearalenone. Angew. Chem. Int. Ed., 1998, 37, 2534-2537.
[161]
Marsault, E.; Hoveyda, H.R.; Peterson, M.L.; Saint-Louis, C.; Landry, A.; Ve’zina, M.; Ouellet, L.; Wang, Z.; Ramaseshan, M.; Beaubien, S.; Benakli, K.; Beauchemin, S.; De’ziel, R.; Peeters, T.; Fraser, G.L. Discovery of a new class of macrocyclic antagonists to the human motilin receptor. J. Med. Chem., 2006, 49, 7190-7197.