[1]
Wang, C.; Lakshmipriya, T.; Gopinath, S.C.B. Amine-aldehyde chemical conjugation on a potassium hydroxide-treated polystyrene ELISA Surface for nanosensing an HIV-P24 antigen. Nanoscale Res. Lett., 2019, 14(1), 21.
[2]
Liu, F.; Zhang, Y.; Wang, H.; Zhang, S. Novel conjugated polymers prepared by direct (hetero) arylation: An eco-friendly tool for organic electronics. Molecules, 2018, 23(2), 408.
[3]
Pilolli, R.; Monaci, L.; Visconti, A. Advances in biosensor development based on integrating nanotechnology and applied to food-allergen management. Trends Analyt. Chem., 2013, 47, 12-26.
[4]
Rai, V.; Acharya, S.; Dey, N. Implications of nanobiosensors in agriculture. J. Biomater. Nanobiotechnol., 2012, 3(2A), 315.
[5]
Taniselass, S.; Md Arshad, M.K.; Gopinath, S.C.B. Current state of green reduction strategies: Solution-processed reduced graphene oxide for healthcare biodetection. Mater. Sci. Eng. C, 2018, 96, 904-914.
[6]
Wang, F.; Lakshmipriya, T.; Gopinath, S.C.B. Red spectral shift in sensitive colorimetric detection of tuberculosis by ESAT-6 antigen-antibody complex: A new strategy with gold nanoparticle. Nanoscale Res. Lett., 2018, 13(1), 331.
[7]
Indah, T.P. Determination of functional head and tail groups of Self-Assembled Monolayer (SAM) formed by 2-mercaptoacetate on aluminium oxide substrate. Int. J. Nanoelectr. Mater., 2018, 11, 115-122.
[8]
Sumitha, S.; Vasanthi, S.; Shalini, S.; Chinni, S.V.; Gopinath, S.C.B.; Anbu, P.; Bahari, M.B.; Harish, R.; Kathiresan, S.; Ravichandran, V. Phyto-mediated photo catalysed green synthesis of silver nanoparticles using durio zibethinus seed extract: Antimicrobial and cytotoxic activity and photocatalytic applications. Molecules, 2018, 23(12), 3311.
[9]
Kato, Y.; Minakawa, N.; Komatsu, Y.; Kamiya, H.; Ogawa, N.; Harashima, H.; Matsuda, A. New NTP analogs: The synthesis of 4′-ThioUTP and 4′-ThioCTP and their utility for SELEX. Nucleic Acids Res., 2005, 33(9), 2942-2951.
[10]
Edwards, K.A.; Wang, Y.; Baeumner, A.J. Aptamer sandwich assays: Human α-thrombin detection using liposome enhancement. Anal. Bioanal. Chem., 2010, 398(6), 2645-2654.
[11]
You, M.; Chen, Y.; Peng, L.; Han, D.; Yin, B.; Ye, B.; Tan, W. Engineering DNA aptamers for novel analytical and biomedical applications. Chem. Sci., 2011, 2(6), 1003.
[12]
Gopinath, S.C.B.; Kumar, P.K.R. Aptamers that bind to the hemagglutinin of the recent pandemic influenza virus H1N1 and efficiently inhibit agglutination. Acta Biomater., 2013, 9(11), 8932-8941.
[13]
Song, K.M.; Jeong, E.; Jeon, W.; Cho, M.; Ban, C. Aptasensor for ampicillin using gold nanoparticle-based dual fluorescence-colorimetric methods. Anal. Bioanal. Chem., 2012, 402(6), 2153-2161.
[14]
Green, N.M. Spectrophotometric determination of avidin and biotin. Methods Enzymol., 1970, 18, 418-424.
[15]
Gopalakrishnan, L.; Doriya, K.; Kumar, D.S. Moringa oleifera: A review on nutritive importance and its medicinal application. Food Sci. Hum. Wellness, 2016, 5(2), 49-56.
[16]
Chivers, C.E.; Koner, A.L.; Lowe, E.D.; Howarth, M. How the biotin-streptavidin interaction was made even stronger: Investigation via crystallography and a chimaeric tetramer. Biochem. J., 2011, 435(1), 55-63.
[17]
Steinmetz, N.F. Viral nanoparticles in drug delivery and imaging. Mol. Pharm., 2013, 10(1), 1-2.
[18]
Ivona, S.; Vera, H.; Marcela, L.; Jan, P.; Denisa, M.; Karel, K.; Frantisek, F. Preparation, physico-chemical properties and
application of nanoparticles in bioanalyses. In: Conference
Proceedings Nanocon 2009, 2009.
[19]
Letchumanan, I.; Gopinath, S.C.B.; Md Arshad, M.K.; Anbu, P.; Lakshmipriya, T. Gold nano-urchin integrated label-free amperometric aptasensing human blood clotting factor IX: A prognosticative approach for “Royal Disease”. Biosens. Bioelectron., 2019, 131, 128-135.
[20]
Letchumanan, I.; Md Arshad, M.K.; Balakrishnan, S.R.; Gopinath, S.C.B. Gold-nanorod enhances dielectric voltammetry detection of C-reactive protein: A predictive strategy for cardiac failure. Biosens. Bioelectron., 2019, 130, 40-47.
[21]
Pandian, K.; Mohanasoundari, D. Rudra showdri, N.P.; Kalaiyarasi, J.; Gopinath, S.C.B. Voltammetric estimation of caffeic acid on glassy carbon electrode modified chitosan-protected nanohybrid composed of carbon black and reduced graphene oxide. Mikrochim. Acta, 2019, 186, 54.
[22]
Sudarvizhi, A.; Pandian, K.; Oluwafemi, O.S.; Gopinath, S.C.B. Amperometry detection of nitrate in food samples using tetrasulfonated copper phthalocyanine modified glassy carbon electrode. Sens. Actuators B Chem., 2018, 272, 151-159.
[23]
Ranjani, B.; Kalaiyarasi, J.; Pavithra, L.; Devasena, T.; Pandian, K.; Gopinath, S.C.B. Amperometric determination of nitrite using natural fibers as template for titanium dioxide nanotubes with immobilized hemin as electron transfer mediator. Mikrochim. Acta, 2018, 185, 194.
[24]
Perumal, V.; Saheed, M.S.M.; Mohamed, N.M.; Saheed, M.S.M.; Murthe, S.S.; Gopinath, S.C.B.; Chiu, J.M. Gold nanorod embedded novel 3D graphene nanocomposite for selective bio-capture in rapid detection of Mycobacterium tuberculosis. Biosens. Bioelectron., 2018, 116, 116-122.