[1]
Chakrabarti, A.; Miskovic, L.; Soh, K.C.; Hatzimanikatis, V. Towards kinetic modeling of genome-scale metabolic networks without sacrificing stoichiometric, thermodynamic and physiological constraints. Biotechnol. J., 2013, 8, 1043-1057.
[2]
Cvijovic, M.; Bordel, S.; Nielsen, J. Mathematical models of cell factories: moving towards the core of industrial biotechnology. Microb. Biotechnol., 2011, 4(5), 572-584.
[3]
Almquist, J.; Cvijovic, M.; Hatzimanikatis, V.; Nielsen, J.; Jirstrand, M. Kinetic models in industrial biotechnology - improving cell factory performance. Metab. Eng., 2014, 24, 38-60.
[4]
Song, H.S.; DeVilbiss, F.; Ramkrishna, D. Modeling metabolic systems: the need for dynamics. Curr. Opin. Chem. Eng., 2013, 2(4), 373-382.
[5]
Link, H.; Christodoulou, D.; Sauer, U. Advancing metabolic models with kinetic information. Curr. Opin. Biotechnol., 2014, 29, 8-14.
[6]
Langemann, D.; Nesteruk, I. Comparison of mathematical models for the dynamics of the Chernivtsi children disease. Math. Comput. Simul., 2016, 123, 68-79.
[7]
Garg, P.; Sharma, P. Computational approaches for enzyme functional class prediction: a review. Curr. Proteomics, 2014, 11(1), 17-22.
[8]
Sanjeev, A.; Mattaparthi, V.S.K. Computational investigation on tyrosine to alanine mutations delaying the early stage of α-synuclein aggregation. Curr. Proteomics, 2017, 14(1), 31-41.
[9]
Balsa-Canto, E.; Alonso, A.; Banga, J.R. An Iterative identification procedure for dynamic modeling of biochemical networks. BMC Syst. Biol., 2010, 4, 11.
[10]
Yadav, V.G.; De Mey, M.; Giaw-Lim, C.; Kumaran, A.P.; Stephanopoulos, G. The future of metabolic engineering and synthetic biology: towards a systematic practice. Metab. Eng., 2012, 14(3), 233-241.
[11]
Smallbone, K.; Mendes, P. Large-scale metabolic models: from reconstruction to differential equations. Ind. Biotechnol., 2013, 9(4), 179-184.
[12]
Stanford, N.J.; Lubitz, T.; Smallbone, K.; Klipp, E.; Mendes, P.; Liebermeister, W. Systematic construction of kinetic models from genome-scale metabolic networks. PLoS One, 2013, 8(11)e79195
[13]
Dobson, P.D.; Smallbone, K.; Jameson, D.; Simeonidis, E.; Lanthaler, K.; Pir, P.; Lu, C.; Swainston, N.; Dunn, W.B.; Fisher, P.; Hull, D.; Brown, M.; Oshota, O.; Stanford, N.J.; Kell, D.B.; King, R.D.; Oliver, S.G.; Stevens, R.D.; Mendes, P. Further developments towards a genome-scale metabolic model of yeast. BMC Syst. Biol., 2010, 4, 145.
[14]
Smallbone, K.; Simeonidis, E.; Swainston, N.; Mendes, P. Towards a genome-scale kinetic model of cellular metabolism. BMC Syst. Biol., 2010, 4, 6.
[15]
Mendes, P.; Kell, D. Non-linear optimization of biochemical pathways: applications to metabolic engineering and parameter estimation. Bioinformatics, 1998, 14(10), 869-883.
[16]
Johnson, M.L.; Faunt, L.M. Parameter estimation by least-squares methods. Methods Enzymol., 1992, 210, 1-37.
[17]
Moles, C.G.; Mendes, P.; Banga, J.R. Parameter estimation in biochemical pathways: a comparison of global optimization methods. Genome Res., 2003, 13(11), 2467-2474.
[18]
Banga, J.R.; Balsa-Canto, E. Parameter estimation and optimal experimental design. Essays Biochem., 2008, 45, 195-209.
[19]
Chong, C.; Mohamad, M.; Deris, S.; Shamsir, M.; Chai, L.; Choon, Y. Parameter estimation by using an improved bee memory differential evolution algorithm (IBMDE) to simulate biochemical pathways. Curr. Bioinform., 2014, 9(1), 65-75.
[20]
Xu, Q.; Wang, L.; Wang, N.; Hei, X.; Zhao, L. A review of opposition-based learning from 2005 to 2012. Eng. Appl. Artif. Intell., 2014, 29, 1-12.
[21]
Kazimipour, B.; Li, X.; Qin, A.K. Initialization methods for large scale global optimization. In, IEEE Congr. Evolut. Comput., 2013, pp. 2750-2757.
[22]
Egea, J.; Balsa-Canto, E. Dynamic optimization of nonlinear processes with an enhanced scatter search method. Ind. Eng. Chem. Res., 2009, 48(9), 4388-4401.
[23]
Egea, J.; Vazquez, E.; Banga, J.R.; Martí, R. Improved scatter search for the global optimization of computationally expensive dynamic models. J. Glob. Optim., 2009, 43(2-3), 175-190.
[24]
Egea, J.; Henriques, D.; Cokelaer, T.; Villaverde, A.F.; MacNamara, A.; Danciu, D.; Banga, J.R.; Saez-Rodriguez, J. MEIGO: an open-source software suite based on metaheuristics for global optimization in systems biology and bioinformatics. BMC Bioinformatics, 2014, 15, 136.
[25]
Glover, F. A template for scatter search and path relinking. Artif. Evol, 1998, 1363, 3-51.
[26]
Rahnamayan, S.; Tizhoosh, H.R.; Salama, M.M.A. Quasi-oppositional differential evolution. In, IEEE Congr. Evolut. Comput. CEC, 2007, pp. 2229-2236.
[27]
Egea, J.; Martí, R.; Banga, J.R. An evolutionary method for complex-process optimization. Comput. Oper. Res., 2010, 37(2), 315-324.
[28]
Michalewicz, Z. Genetic algorithms + data structures = evolution programs, 3rd ed; Springer-Verlag: London, UK, 1996.
[29]
Storn, R.; Price, K. Differential evolution - a simple and efficient heuristic for global optimization over continuous spaces. J. Glob. Optim., 1997, 11(4), 341-359.
[30]
Maciel, L.; Gomide, F.; Ballini, R. A differential evolution algorithm for yield curve estimation. Math. Comput. Simul., 2016, 129, 10-30.
[31]
Villaverde, A.F.; Henriques, D.; Smallbone, K.; Bongard, S.; Schmid, J.; Cicin-Sain, D.; Crombach, A.; Saez-Rodriguez, J.; Mauch, K.; Balsa-Canto, E.; Mendes, P.; Jaeger, J.; Banga, J.R. BioPreDyn-Bench: a suite of benchmark problems for dynamic modelling in systems biology. BMC Syst. Biol., 2015, 9(8), 1-15.
[32]
Villaverde, A.F.; Bongard, S.; Mauch, K.; Muller, D.; Balsa-Canto, E.; Schmid, J.; Banga, J.R. High-confidence predictions in systems
biology dynamic models. Adv. Intell. Syst. Comput., 2014, 294(AISC), 161-171.
[33]
Villaverde, A.F.; Bongard, S.; Mauch, K.; Müller, D.; Balsa-Canto, E.; Schmid, J.; Banga, J.R. A consensus approach for estimating the predictive accuracy of dynamic models in biology. Comput. Methods Programs Biomed., 2015, 119(1), 17-28.
[34]
Ahn, W.S.; Antoniewicz, M.R. Towards dynamic metabolic flux analysis in CHO cell cultures. Biotechnol. J., 2012, 7(1), 61-74.
[35]
Xie, W.; Yu, W.; Zou, X. Diversity-maintained differential evolution embedded with gradient-based local search. Soft Comput., 2013, 17(8), 1511-1535.
[36]
Liu, Y.; Zou, X. Mathematical modeling and quantitative analysis of HIV-1 Gag trafficking and polymerization [J]. PLOS Comput. Biol., 2017, 13(9)e1005733