[1]
MacMillan, D.W.C. The advent and development of organocatalysis. Nature, 2008, 455(7211), 304-308.
[2]
Berkessel, A.; Gröger, H. Asymmetric Organocatalysis: From Biomimetic Concepts to Applications in Asymmetric Synthesis, 2006.
[3]
Holland, M.C.; Gilmour, R. Deconstructing covalent organocatalysis. Angew. Chem. Int. Ed., 2015, 54(13), 3862-3871.
[4]
Ávila, E.P.; Amarante, G.W. Recent advances in asymmetric counteranion-directed catalysis (ACDC). ChemCatChem, 2012, 4(11), 1713-1721.
[5]
Wong, K.C. Review of NMR spectroscopy: Basic principles, concepts and applications in chemistry NMR spectroscopy: Basic principles, concepts and applications in chemistry; 3rd Edition by HaraldGünther Wiley-VCH: Weinheim, Germany, 2013. Xvi + 718 Pp. ISBN 978-352733. J. Chem. Educ., 2014, 91(8), 1103-1104.
[6]
Lepre, C.A.; Moore, J.M.; Peng, J.W. Theory and applications of NMR-based screening in pharmaceutical research. Chem. Rev., 2004, 104(8), 3641-3676.
[8]
Seco, J.M.; Quiñoá, E.; Riguera, R. The assignment of absolute configuration by NMR. Chem. Rev., 2004, 104(1), 17-118.
[9]
Rabi, I.I. Space quantization in a gyrating magnetic field. Phys. Rev., 1937, 51(8), 652-654.
[10]
Bloch, F.; Hansen, W.W.; Packard, M. Nuclear induction. Phys. Rev., 1946, 69(3-4), 127-127.
[11]
Bloch, F.; Hansen, W.W.; Packard, M. The nuclear induction experiment. Phys. Rev., 1946, 70(7-8), 474-485.
[12]
Purcell, E.M.; Pound, R.V.T. Proceedings of the american physical society Phys. Rev., 1946, 69(11-12), pp. 674-702.
[13]
Arnold, J.T.; Dharmatti, S.S.; Packard, M.E. Chemical effects on nuclear induction signals from organic compounds. J. Chem. Phys., 1951, 19(4), 507-507.
[14]
Ernst, R.R.; Anderson, W.A. Application of fourier transform spectroscopy to magnetic resonance. Rev. Sci. Instrum., 1966, 37(1), 93-102.
[17]
De Castro, P.P.; Carpanez, A.G.; Amarante, G.W. Azlactone reaction developments. Chem. A Eur. J., 2016, 22(30), 10294-10318.
[18]
Pinheiro, D.L.J.; Ávila, E.P.; Batista, G.M.F.; Amarante, G.W. Chemoselective reduction of azlactones using schwartz’s reagent. J. Org. Chem., 2017, 82(11), 5981-5985.
[19]
de Castro, P.P.; Batista, G.M.F.; dos Santos, H.F.; Amarante, G.W. Theoretical study on the epimerization of azlactone rings: Keto-Enol tautomerism or base-mediated racemization? ACS Omega, 2018, 3(3), 3507-3512.
[20]
Pinheiro, D.L.J.; Ávila, E.P.; Amarante, G.W. A practicable synthesis of oxazol-5(4H)-ones through hydrogenation: scope and applications. ChemistrySelect, 2016, 1(11), 2960-2962.
[21]
Pinheiro, D.L.J.; Batista, G.M.F.; Gonçalves, J.R.; Duarte, T.N.; Amarante, G.W. Sugar-based organocatalyst for the diastereoselective desymmetrization of dibenzylideneacetones. European. J. Org. Chem., 2016, 2016(3), 459-462.
[22]
Pinheiro, D.L.J.; Batista, G.M.F.; de Castro, P.P.; Flores, L.S.; Andrade, G.F.S.; Amarante, G.W. A Brønsted base-promoted diastereoselective dimerization of azlactones. Beilstein J. Org. Chem., 2017, 13, 2663-2670.
[23]
de Castro, P.P.; Rimulo, I.M.R.; de Almeida, A.M.; Diniz, R.; Amarante, G.W. Brønsted acid-catalyzed epimerization-free preparation of dual-protected amino acid derivatives. ACS Omega, 2017, 2(6), 2967-2976.
[24]
de Castro, P.P.; Campos, D.L.; Pavan, F.R.; Amarante, G.W. Dual-protected amino acid derivatives as new antitubercular agents. Chem. Biol. Drug Des., 2018, 92(2), 1576-1580.
[25]
de Castro, P.; Batista, G.; Pinheiro, D.; dos Santos, H.; Amarante, G. Old drawback on azlactone formation revealed by a combination of theoretical and experimental studies. J. Braz. Chem. Soc., 2018, 29(11), 2213-2219.
[26]
Bera, M.; Ghosh, T.K.; Akhuli, B.; Ghosh, P. Tris-ureas as versatile and highly efficient organocatalysts for michael addition reactions of nitro-olefins: Mechanistic insight from in-situ diagnostics. J. Mol. Catal. A Chem., 2015, 408, 287-295.
[27]
Pereira, A.A.; De Castro, P.P.; De Mello, A.C.; Ferreira, B.R.V.; Eberlin, M.N.; Amarante, G.W. Brønsted acid catalyzed azlactone ring opening by nucleophiles. Tetrahedron, 2014, 70(20), 3271-3275.
[28]
De Castro, P.P.; Dos Santos, I.F.; Amarante, G.W. Brønsted acid catalyzed peptide synthesis through azlactone rings. Curr. Org. Synth., 2016, 13, 440-444.
[29]
dos Santos, I.; de Castro, P.; de Almeida, A.; Amarante, G. Brønsted acid-catalyzed dipeptides functionalization through azlactones. J. Braz. Chem. Soc., 2017, 28(7), 1145-1148.
[30]
Carpanez, A.G.; Coelho, F.; Amarante, G.W. On the tandem Morita-Baylis-Hillman/transesterification processes. Mechanistic insights for the role of protic solvents. J. Mol. Struct., 2018, 1154, 83-91.
[31]
Ashley, M.A.; Hirschi, J.S.; Izzo, J.A.; Vetticatt, M.J. Isotope effects reveal the mechanism of enamine formation in L-proline-catalyzed α-amination of aldehydes. J. Am. Chem. Soc., 2016, 138(6), 1756-1759.
[32]
Schmid, M.B.; Zeitler, K.; Gschwind, R.M. NMR Investigations on the proline-catalyzed aldehyde self-condensation: Mannich mechanism, dienamine detection, and erosion of the aldol addition selectivity. J. Org. Chem., 2011, 76(9), 3005-3015.
[33]
Perez, F.; Ren, Y.; Boddaert, T.; Rodriguez, J.; Coquerel, Y. A stable N-heterocyclic carbene organocatalyst for hydrogen/deuterium exchange reactions between pseudoacids and deuterated chloroform. J. Org. Chem., 2015, 80(2), 1092-1097.
[34]
Aue, W.P.; Bartholdi, E.; Ernst, R.R. Two‐dimensional spectroscopy. Application to nuclear magnetic resonance. J. Chem. Phys., 1976, 64(5), 2229-2246.
[35]
Malm, C.; Kim, H.; Wagner, M.; Hunger, J. Complexity in acid-base titrations: multimer formation between phosphoric acids and imines. Chem. A Eur. J., 2017, 23(45), 10853-10860.
[36]
Berkessel, A.; Elfert, S.; Etzenbach-Effers, K.; Teles, J.H. Aldehyde umpolung by N-heterocyclic carbenes: NMR characterization of the breslow intermediate in its keto form, and a spiro-dioxolane as the resting state of the catalytic system. Angew. Chemie. Int. Ed., 2010, 49(39), 7120-7124.
[37]
Schmid, M.B.; Zeitler, K.; Gschwind, R.M. The elusive enamine intermediate in proline-catalyzed aldol reactions: NMR detection, formation pathway, and stabilization trends. Angew. Chemie. Int. Ed., 2010, 49(29), 4997-5003.
[38]
Abbasov, M.E.; Hudson, B.M.; Tantillo, D.J.; Romo, D. Stereodivergent, diels-alder-initiated organocascades employing α,β-unsaturated acylammonium salts: scope, mechanism, and application. Chem. Sci., 2017, 8(2), 1511-1524.
[39]
Burés, J.; Dingwall, P.; Armstrong, A.; Blackmond, D.G. Rationalization of an unusual solvent-induced inversion of enantiomeric excess in organocatalytic selenylation of aldehydes. Angew. Chemie. Int. Ed., 2014, 53(33), 8700-8704.
[40]
Pubill-Ulldemolins, C.; Bonet, A.; Bo, C.; Gulyás, H.; Fernández, E. Activation of diboron reagents with brønsted bases and alcohols: an experimental and theoretical perspective of the organocatalytic boron conjugate addition reaction. Chem. A Eur. J., 2012, 18(4), 1121-1126.
[41]
Prakash, G.K.S.; Wang, F.; Zhang, Z.; Haiges, R.; Rahm, M.; Christe, K.O.; Mathew, T.; Olah, G.A. Long-lived trifluoromethanide anion: A key intermediate in nucleophilic trifluoromethylations. Angew. Chemie. Int. Ed., 2014, 53(43), 11575-11578.
[42]
Georgiou, I.; Whiting, A. Mechanism and optimisation of the homoboroproline bifunctional catalytic asymmetric aldol reaction: lewis acid tuning through in situ esterification. Org. Biomol. Chem., 2012, 10(12), 2422-2430.
[43]
Tyndall, S.; Wong, K.F.; VanAlstine-Parris, M.A. Insight into the mechanism of the pechmann condensation reaction using NMR. J. Org. Chem., 2015, 80(18), 8951-8953.
[44]
Cozzi, F. Immobilization of organic catalysts: When, Why, and How. Adv. Synth. Catal., 2006, 348(12-13), 1367-1390.
[45]
Trindade, A.F.; Gois, P.M.P.; Afonso, C.A.M. Recyclable stereoselective catalysts. Chem. Rev., 2009, 109(2), 418-514.
[46]
Gruttadauria, M.; Giacalone, F.; Noto, R. Supported proline and proline-derivatives as recyclable organocatalysts. Chem. Soc. Rev., 2008, 37(8), 1666-1668.
[47]
Zamboulis, A.; Rahier, N.J.; Gehringer, M.; Cattoën, X.; Niel, G.; Bied, C.; Moreau, J.J.E.; Man, M.W.C. Silica-supported l-proline organocatalysts for asymmetric aldolisation. Tetrahedron Asymmetry, 2009, 20(24), 2880-2885.
[48]
Chagas, L.H.; De Carvalho, G.S.G.; Do Carmo, W.R.; San Gil, R.A.S.; Chiaro, S.S.X.; Leitão, A.A.; Diniz, R.; De Sena, L.A.; Achete, C.A. MgCoAl and NiCoAl LDHs synthesized by the hydrothermal urea hydrolysis method: structural characterization and thermal decomposition. Mater. Res. Bull., 2015, 64, 207-215.
[49]
Shylesh, S.; Zhou, Z.; Meng, Q.; Wagener, A.; Seifert, A.; Ernst, S.; Thiel, W.R. Sustainable, green protocols for heterogenized organocatalysts: N-phenylthiazolium salts heterogenized on organic-inorganic hybrid mesoporous supports. J. Mol. Catal. A Chem., 2010, 332(1-2), 65-69.
[50]
Shi, J.Y.; Wang, C.A.; Li, Z.J.; Wang, Q.; Zhang, Y.; Wang, W. Heterogeneous organocatalysis at work: functionalization of hollow periodic mesoporous organosilica spheres with macmillan catalyst. Chem. A Eur. J., 2011, 17(22), 6206-6213.
[51]
Wang, C.A.; Zhang, Z.K.; Yue, T.; Sun, Y.L.; Wang, L.; Wang, W.D.; Zhang, Y.; Liu, C.; Wang, W. “Bottom-Up” embedding of the jørgensen-hayashi catalyst into a chiral porous polymer for highly efficient heterogeneous asymmetric organocatalysis. Chem. A Eur. J., 2012, 18(22), 6718-6723.
[52]
Kandel, K.; Althaus, S.M.; Peeraphatdit, C.; Kobayashi, T.; Trewyn, B.G.; Pruski, M.; Slowing, I.I. Substrate inhibition in the heterogeneous catalyzed aldol condensation: A mechanistic study of supported organocatalysts. J. Catal., 2012, 291, 63-68.
[53]
Monge-Marcet, A.; Cattoën, X.; Alonso, D.A.; Nájera, C.; Man, M.W.C.; Pleixats, R. Recyclable silica-supported prolinamide organocatalysts for direct asymmetric aldol reaction in water. Green Chem., 2012, 14(6), 1601-1610.
[54]
Porta, R.; Coccia, F.; Annunziata, R.; Puglisi, A. comparison of different polymer- and silica-supported 9-Amino-9-Deoxy-epi-quinines as recyclable organocatalysts. ChemCatChem, 2015, 7(9), 1490-1499.