Generic placeholder image

Current Chemical Biology

Editor-in-Chief

ISSN (Print): 2212-7968
ISSN (Online): 1872-3136

Review Article

Prospective of Natural Gum Nanoparticulate Against Cardiovascular Disorders

Author(s): Aakash Deep*, Neeraj Rani, Ashok Kumar, Rimmy Nandal, Prabodh C. Sharma and Arun K. Sharma

Volume 13, Issue 3, 2019

Page: [197 - 211] Pages: 15

DOI: 10.2174/2212796813666190328194825

Price: $65

Abstract

Background: Objective: Various natural gums can be synergistically used in nanoparticulate drug delivery systems to treat cardiovascular diseases. Nanotechnology has been integrated into healthcare in terms of theranostics. In this review, we consider various natural gums that can be used for the preparation of nanoparticles and their role to treat cardiovascular disease.

Methods: Nanoparticles can carry drugs at nanoscales and deliver them to the targeted sites with the desired pattern of drug release. They have specialized uptake mechanisms (e.g. - absorptive endocytosis) which improve the bioavailability of drugs.

Results: By considering cardiovascular diseases at the molecular level, it is possible to modify the materials with nanotechnology and apply nano-formulations efficiently as compared with conventional preparations, due to the fact that the extracellular matrix (ECM) comprises components at the nanoscale range. The interactions of ECM components with cellular components occur at the nanoscale, therefore the nanomaterials have the potential to maintain the nanoscale properties of cells. The synthetic materials used to develop the nanoparticulate drug delivery system may cause toxicity.

Conclusion: This problem can be overcome by using natural polymers. Natural gums can be used in nanoparticulate drug delivery systems as reducing and stabilizing agents and in some cases; they may directly or indirectly influence the rate of drug release and absorption from the preparation.

Keywords: Natural gums, nanoparticulate drug delivery, cardiovascular disease, nanoscale, Gum acacia, vascular protection.

Graphical Abstract

[1]
Hajar R. Contribution to cardiovascular disease. Heart Views 2016; 17(2): 78-81.
[http://dx.doi.org/10.4103/1995-705X.185130] [PMID: 27512540]
[2]
Liu M, Li M, Wang G, et al. Heart-targeted nanoscale drug delivery systems. J Biomed Nanotechnol 2014; 10(9): 2038-62.
[http://dx.doi.org/10.1166/jbn.2014.1894] [PMID: 25992448]
[3]
Sharma AK, Haidarali S, Nagaich U. Apoptosis: A potential target site for natural bioactive agents during myocardial infarction. J Adv Pharm Technol Res 2014; 4: 264-84.
[4]
Gundogdu E, Senyigit Z, Ilem-Ozdemir D. Nanomedicine for the diagnosis and treatment of cardiovascular disease: Current status and future perspective. In: i Concept Press, ed. Cardiovasc Disease. USA: Concept Press. In: 2013; pp. 187-201.
[5]
Hagens WI, Oomen AG, de Jong WH, Cassee FR, Sips AJ. What do we (need to) know about the kinetic properties of nanoparticles in the body? Regul Toxicol Pharmacol 2007; 49(3): 217-29.
[http://dx.doi.org/10.1016/j.yrtph.2007.07.006] [PMID: 17868963]
[6]
Sharma AK, Kumar A, Taneja G, et al. Synthesis and preliminary therapeutic evaluation of copper nanoparticles against diabetes mellitus and -induced micro- (renal) and macro-vascular (vascular endothelial and cardiovascular) abnormalities in rats. RSC Advances 2016; 6: 36870-80.
[http://dx.doi.org/10.1039/C6RA03890E]
[7]
Anwunobi AP, Emeje MO. Recent applications of natural polymers in nanodrug delivery. J Nanomed Nanotechnol 2011; 54: 1-6.
[http://dx.doi.org/10.4172/2157-7439.S4-002]
[8]
De Jong WH, Borm PJ. Drug delivery and nanoparticles: Applications and hazards. Int J Nanomedicine 2008; 3(2): 133-49.
[http://dx.doi.org/10.2147/IJN.S596] [PMID: 18686775]
[9]
Zharov VP, Kim JW, Curiel DT, Everts M. Self-assembling nanoclusters in living systems: Application for integrated photothermal nanodiagnostics and nanotherapy. Nanomedicine 2005; 1(4): 326-45.
[http://dx.doi.org/10.1016/j.nano.2005.10.006] [PMID: 17292107]
[10]
Panyam J, Labhasetwar V. Biodegradable nanoparticles for drug and gene delivery to cells and tissue. Adv Drug Deliv Rev 2003; 55(3): 329-47.
[http://dx.doi.org/10.1016/S0169-409X(02)00228-4] [PMID: 12628320]
[11]
Hughes GA. Nanostructure-mediated drug delivery. Nanomedicine 2005; 1(1): 22-30.
[http://dx.doi.org/10.1016/j.nano.2004.11.009] [PMID: 17292054]
[12]
Fu Q, Saltsburg H, Flytzani-Stephanopoulos M. Active nonmetallic Au and Pt species on ceria-based water-gas shift catalysts. Science 2003; 301(5635): 935-8.
[http://dx.doi.org/10.1126/science.1085721] [PMID: 12843399]
[13]
Jasinski P, Suzuki T, Anderson HU. Nanocrystalline undoped ceria oxygen sensor. Sens Actuators B Chem 2003; 95: 73-7.
[http://dx.doi.org/10.1016/S0925-4005(03)00407-6]
[14]
Iravani S. Green synthesis of metal nanoparticles using plants. Green Chem 2011; 13: 2638-50.
[http://dx.doi.org/10.1039/c1gc15386b]
[15]
Raizada A, Bandari A, Kumar B. Polymers in drug delivery: A review. Int J Pharm Res Dev 2010; 2: 9-20.
[16]
Na K, Lee KH, Lee DH, Bae YH. Biodegradable thermo-sensitive nanoparticles from poly(L-lactic acid)/poly(ethylene glycol) alternating multi-block copolymer for potential anti-cancer drug carrier. Eur J Pharm Sci 2006; 27(2-3): 115-22.
[http://dx.doi.org/10.1016/j.ejps.2005.08.012] [PMID: 16253487]
[17]
Ricci-Júnior E, Marchetti JM. Preparation, characterization, photocytotoxicity assay of PLGA nanoparticles containing zinc (II) phthalocyanine for photodynamic therapy use. J Microencapsul 2006; 23(5): 523-38.
[http://dx.doi.org/10.1080/02652040600775525] [PMID: 16980274]
[18]
Hamishehkar H, Bahadori MB, Vandghanooni S, et al. Preparation, characterization and anti-proliferative effects of sclareolloaded solid lipid nanoparticles on A549 human lung epithelial cancer cells. J Drug Deliv Sci Technol 2018; 45: 272-80.
[http://dx.doi.org/10.1016/j.jddst.2018.02.017]
[19]
Guzmán KA, Taylor MR, Banfield JF. Environmental risks of nanotechnology: National Nanotechnology Initiative funding, 2000-2004. Environ Sci Technol 2006; 40(5): 1401-7.
[PMID: 16568748]
[20]
Patel DB, Patel MM. Natural excipients in controlled drug delivery systems. J Pharm Res 2009; 2: 900-7.
[21]
Prajapati VD, Jani GK, Moradiya NG, Randeria NP. Pharmaceutical applications of various natural gums, mucilages and their modified forms. Carbohydr Polym 2013; 92(2): 1685-99.
[http://dx.doi.org/10.1016/j.carbpol.2012.11.021] [PMID: 23399207]
[22]
Perepelkin KE. Polymeric materials of the future based on renewable plant resources and biotechnologies: Fibres, films, plastics. Fibre Chem 2005; 37: 417-30.
[http://dx.doi.org/10.1007/s10692-006-0014-3]
[23]
Dutta RK, Sahu S. Development of diclofenac sodium loaded magnetic nanocarriers of pectin interacted with chitosan for targeted and sustained drug delivery. Colloids Surf B Biointerfaces 2012; 97: 19-26.
[http://dx.doi.org/10.1016/j.colsurfb.2012.04.030] [PMID: 22580480]
[24]
Pandey R, Khuller GK. Polymer based drug delivery systems for mycobacterial infections. Curr Drug Deliv 2004; 1(3): 195-201.
[http://dx.doi.org/10.2174/1567201043334669] [PMID: 16305383]
[25]
Chamarthy SP, Pinal R. Plasticizer concentration and the performance of a diffusion-controlled polymeric drug delivery system. Colloids Surf A Physiochem Eng Asp. 2008; SS331:: 25-30.
[http://dx.doi.org/10.1016/j.colsurfa.2008.05.047]
[26]
Alonso-Sande M, Teijeiro-Osorio D, Remuñán-López C, Alonso MJ. Glucomannan, a promising polysaccharide for biopharmaceutical purposes. Eur J Pharm Biopharm 2009; 72(2): 453-62.
[http://dx.doi.org/10.1016/j.ejpb.2008.02.005] [PMID: 18511246]
[27]
Nagavarma BV, Yadav HK, Ayaz A. Different techniques for preparation of polymeric nanoparticles - a review. Asian J Pharm Clin Res 2012; 5: 16-23.
[28]
Carneiro-da-Cunha MG, Cerqueira MA, Souza BWS. Physical properties of edible coatings and films made with a polysaccharide from Anacardiumoccidentale L. J Food Eng 2009; 95: 379-85.
[http://dx.doi.org/10.1016/j.jfoodeng.2009.05.020]
[29]
Azeredo HMC, Magalhaes US, Oliveira SA. Tensile and water vapour properties of calcium-crosslinked alginate-cashew tree gum films. Int J Food Sci Technol 2012; 47: 710-5.
[http://dx.doi.org/10.1111/j.1365-2621.2011.02897.x]
[30]
Rangasamy M. Nano technology: A review. J Appl Pharm Sci 2011; 1: 8-16.
[31]
Goswami S, Naik S. Natural gums and its pharmaceutical application. J Sci Innovat Res 2014; 3: 112-21.
[32]
Jani GK, Shah DP, Prajapati VD. Gums and mucilages: Versatile excipients for pharmaceutical formulations. Asian J Pharm Sci 2009; 4: 309-23.
[33]
Clifford SC, Arndt SK, Popp M, Jones HG. Mucilages and polysaccharides in Ziziphus species (Rhamnaceae): Localization, composition and physiological roles during drought-stress. J Exp Bot 2002; 53(366): 131-8.
[http://dx.doi.org/10.1093/jxb/53.366.131] [PMID: 11741049]
[34]
Tuovinen L, Peltonen S, Järvinen K. Drug release from starch-acetate films. J Control Release 2003; 91(3): 345-54.
[http://dx.doi.org/10.1016/S0168-3659(03)00259-1] [PMID: 12932712]
[35]
Basit AW. Oral colon-specific drug delivery using amylose-based film coatings. Pharm Tech Europe 2000; 12: 30-6.
[36]
Ofori-Kwakye K, Adom ENN. Mechanical properties of khaya and albizia films intended for pharmaceutical coating. J Ghana Sci Ass 2007; 9: 43-53.
[37]
Ofori-Kwakye K, Adom ENN, Kipo SL. Preparation and in vitro characteristics of tablet cores coated with albizia, albizia/khaya and albizia/HPMC films. Int J App Sci 2009; 1: 22-9.
[38]
Dürig T, Fassihi R. Guar-based monolithic matrix systems: Effect of ionizable and non-ionizable substances and excipients on gel dynamics and release kinetics. J Control Release 2002; 80(1-3): 45-56.
[http://dx.doi.org/10.1016/S0168-3659(01)00546-6] [PMID: 11943386]
[39]
Zheng Y, Zhu Y, Tian G, Wang A. In situ generation of silver nanoparticles within crosslinked 3D guar gum networks for catalytic reduction. Int J Biol Macromol 2015; 73: 39-44.
[http://dx.doi.org/10.1016/j.ijbiomac.2014.11.007] [PMID: 25445685]
[40]
Dodi G, Pala A, Barbu E, et al. Carboxymethyl guar gum nanoparticles for drug delivery applications: Preparation and preliminary in-vitro investigations. Mater Sci Eng C 2016; 63: 628-36.
[http://dx.doi.org/10.1016/j.msec.2016.03.032] [PMID: 27040258]
[41]
Gupta AP, Verma DK. Preparation and characterization of carboxymethyl guar gum nanoparticles. Int J Biol Macromol 2014; 68: 247-50.
[http://dx.doi.org/10.1016/j.ijbiomac.2014.05.012] [PMID: 24832982]
[42]
Soumya RS, Ghosh S, Abraham ET. Preparation and characterization of guar gum nanoparticles. Int J Biol Macromol 2010; 46(2): 267-9.
[http://dx.doi.org/10.1016/j.ijbiomac.2009.11.003] [PMID: 19941891]
[43]
Abdel-Halima ES, El-Rafie MH, Al-Deyab SS. Polyacrylamide/guar gum graft copolymer for preparation of silver nanoparticles. Carbohydr Polym 2011; 85: 692-7.
[http://dx.doi.org/10.1016/j.carbpol.2011.03.039]
[44]
Ghosh SK, Abdullah F, Mukherjee A. Fabrication and fluorescent labeling of guar gum nanoparticles in a surfactant free aqueous environment. Mater Sci Eng C 2015; 46: 521-9.
[http://dx.doi.org/10.1016/j.msec.2014.10.080] [PMID: 25492017]
[45]
Abdullah MF, Ghosh SK, Basu S, Mukherjee A. Cationic guar gum orchestrated environmental synthesis for silver nano-bio-composite films. Carbohydr Polym 2015; 134: 30-7.
[http://dx.doi.org/10.1016/j.carbpol.2015.06.029] [PMID: 26428096]
[46]
Malik P, Srivastava M, Verma R, Kumar M, Kumar D, Singh J. Nanostructured SnO2 encapsulated guar-gum hybrid nanocomposites for electrocatalytic determination of hydrazine. Mater Sci Eng C 2016; 58: 432-41.
[http://dx.doi.org/10.1016/j.msec.2015.08.035] [PMID: 26478330]
[47]
Likhitha M, Sailaja RR, Priyambika VS, Ravibabu MV. Microwave assisted synthesis of guar gum grafted sodium acrylate/cloisite superabsorbent nanocomposites: reaction parameters and swelling characteristics. Int J Biol Macromol 2014; 65: 500-8.
[http://dx.doi.org/10.1016/j.ijbiomac.2014.02.008] [PMID: 24530336]
[48]
Samarghandian S, Mosa-Al-Reza HA, Atiyeh SD, Marziyeh A. Reduction of serum cholesterol in hypercholesterolemic rats by Guar gum. Avicenna J Phytomed 2011; 1: 36-42.
[49]
Montazer M, Keshvari A, Kahali P. Tragacanth gum/nano silver hydrogel on cotton fabric: In-situ synthesis and antibacterial properties. Carbohydr Polym 2016; 154: 257-66.
[http://dx.doi.org/10.1016/j.carbpol.2016.06.084] [PMID: 27577917]
[50]
Ranjbar-Mohammadi M, Bahrami SH. Electrospun curcumin loaded poly(ε-caprolactone)/gum tragacanth nanofibers for biomedical application. Int J Biol Macromol 2016; 84: 448-56.
[http://dx.doi.org/10.1016/j.ijbiomac.2015.12.024] [PMID: 26706845]
[51]
Ghayempour S, Montazer M. Ultrasound irradiation based in-situ synthesis of star-like Tragacanth gum/zinc oxide nanoparticles on cotton fabric. Ultrason Sonochem 2017; 34: 458-65.
[http://dx.doi.org/10.1016/j.ultsonch.2016.06.019] [PMID: 27773269]
[52]
Darroudi M, Sabouri Z, Oskuee RK, et al. Sol–gel synthesis, characterization, andneurotoxicity effect of zinc oxide nanoparticles using gum tragacant. Ceram Int 2013; 39: 9195-9.
[http://dx.doi.org/10.1016/j.ceramint.2013.05.021]
[53]
Ghayempour S, Montazer M, Mahmoudi Rad M. Tragacanth gum as a natural polymeric wall for producing antimicrobial nanocapsules loaded with plant extract. Int J Biol Macromol 2015; 81: 514-20.
[http://dx.doi.org/10.1016/j.ijbiomac.2015.08.041] [PMID: 26311653]
[54]
Amer S, Kamil R, Siddiqui PQ. The hypolipidaemic effect of gum tragacanth in diet induced hyperlipidaemia in rats. Pak J Pharm Sci 1999; 12(2): 33-9.
[PMID: 16414831]
[55]
Krishnaiah YS, Karthikeyan RS, Satyanarayana V. A three-layer guar gum matrix tablet for oral controlled delivery of highly soluble metoprolol tartrate. Int J Pharm 2002; 241(2): 353-66.
[http://dx.doi.org/10.1016/S0378-5173(02)00273-9] [PMID: 12100863]
[56]
Munday DL, Cox PJ. Compressed xanthan and karaya gum matrices: hydration, erosion and drug release mechanisms. Int J Pharm 2000; 203(1-2): 179-92.
[http://dx.doi.org/10.1016/S0378-5173(00)00444-0] [PMID: 10967440]
[57]
Padil VV, Černík M. Poly (vinyl alcohol)/gum karaya electrospun plasma treated membrane for the removal of nanoparticles (Au, Ag, Pt, CuO and Fe3O4) from aqueous solutions. J Hazard Mater 2015; 287: 102-10.
[http://dx.doi.org/10.1016/j.jhazmat.2014.12.042] [PMID: 25636139]
[58]
Mittal H, Maity A, Ray SS. Synthesis of co-polymer-grafted gum karaya and silica hybrid organic–inorganic hydrogel nanocomposite for the highly effective removal of methylene blue. Chem Eng J 2015; 279: 166-79.
[http://dx.doi.org/10.1016/j.cej.2015.05.002]
[59]
Mittal H, Maity A, Ray SS. Gum karaya based hydrogel nanocomposites for the effective removal of cationic dyes from aqueous solutions. Appl Surf Sci 2016; 364: 917-30.
[http://dx.doi.org/10.1016/j.apsusc.2015.12.241]
[60]
Davidson RL. Handbook of water soluble gums and resins. McGraw Hill, Kingsport Press, New York;. 1980; pp. 24-32.
[61]
Kennedy JR, Kent KE, Brown JR. Rheology of dispersions of xanthan gum, locust bean gum and mixed biopolymer gel with silicon dioxide nanoparticles. Mater Sci Eng C 2015; 48: 347-53.
[http://dx.doi.org/10.1016/j.msec.2014.12.040] [PMID: 25579932]
[62]
Xu W, Jin W, Li Z, et al. Synthesis and characterization of nanoparticles based on negatively charged xanthan gum and lysozyme. Food Res Int 2015; 71: 83-90.
[http://dx.doi.org/10.1016/j.foodres.2015.02.007]
[63]
Yan X, Khor E, Lim LY. PEC films prepared from Chitosan-Alginate coacervates. Chem Pharm Bull (Tokyo) 2000; 48(7): 941-6.
[http://dx.doi.org/10.1248/cpb.48.941] [PMID: 10923820]
[64]
Sungthongjeen S, Pitaksuteepong T, Somsiri A, Sriamornsak P. Studies on pectins as potential hydrogel matrices for controlled-release drug delivery. Drug Dev Ind Pharm 1999; 25(12): 1271-6.
[http://dx.doi.org/10.1081/DDC-100102298] [PMID: 10612023]
[65]
Liu L, Chen G, Fishman ML, Hicks KB. Pectin gel vehicles for controlled fragrance delivery. Drug Deliv 2005; 12(3): 149-57.
[http://dx.doi.org/10.1080/10717540590929966] [PMID: 16025844]
[66]
Barak S, Mudgil D. Locust bean gum: processing, properties and food applications--a review. Int J Biol Macromol 2014; 66: 74-80.
[http://dx.doi.org/10.1016/j.ijbiomac.2014.02.017] [PMID: 24548746]
[67]
Shankaracharyan B. Tamarind-Chemistry, technology and uses: A critical appraisal. J Food Sci Technol 1998; 35: 193-208.
[68]
Avachat AM, Dash RR, Shrotriya SN. Recent investigations of plant based natural gums, mucilages and resins in novel drug delivery systems. Ind J Pharm Edu Res 2011; 45: 86-99.
[69]
Kulkarni D, Dwivedi AK, Sarin JPS, Singh S. Tamarind seed polyose: A potential polysaccharides for sustained release of verapamil hydrochloride as a model drug. Indian J Pharm Sci 1997; 59: 1-7.
[70]
Bhardwaj TR, Kanwar M, Lal R, Gupta A. Natural gums and modified natural gums as sustained-release carriers. Drug Dev Ind Pharm 2000; 26(10): 1025-38.
[http://dx.doi.org/10.1081/DDC-100100266] [PMID: 11028217]
[71]
Kaur H, Ahuja M, Kumar S, Dilbaghi N. Carboxymethyl tamarind kernel polysaccharide nanoparticles for ophthalmic drug delivery. Int J Biol Macromol 2012; 50(3): 833-9.
[http://dx.doi.org/10.1016/j.ijbiomac.2011.11.017] [PMID: 22138451]
[72]
Kaur H, Ahuja M, Kumar S. Evaluation of tropicamide-loaded tamarind seed xyloglucannanoaggregates for ophthalmic delivery. Carbohydr Polym 2013; 94: 286-91.
[http://dx.doi.org/10.1016/j.carbpol.2013.01.054] [PMID: 23544540]
[73]
Pal S, Gorain MK, Giri A, Bandyopadhyay A, Panda AB. In-situ silica incorporated carboxymethyl tamarind: development and application of a novel hybrid nanocomposite. Int J Biol Macromol 2011; 49(5): 1152-9.
[http://dx.doi.org/10.1016/j.ijbiomac.2011.09.012] [PMID: 21946078]
[74]
Bagula M, Sonawanea SK, Arya SS. Tamarind seeds: Chemistry, technology, applications and health benefits: A review. Indian Food Industry Mag 2015; 34: 28-35.
[75]
Anderson DMW, Hirst SE, Stoddart JF. Studies on uronic acid materials. Part XVII. Some structural features of Acacia senegal gum (gum arabic). J Chem Soc C Org 1966; 0: 1959-66.
[http://dx.doi.org/10.1039/j39660001959]
[76]
Wade A, Weller PJ. Handbook of pharmaceutical excipients 2nd ed Washington: American Pharmaceutical association, London: Pharmaceutical press In: 1994.
[77]
Baveja SK, Rao R, Arora KV. Examination of natural gums and mucilages as sustaining materials in tablet dosage forms. Indian J Pharm Sci 1988; 50: 89.
[78]
Ramakrishnan A, Pandit N, Badgujar M, Bhaskar C, Rao M. Encapsulation of endoglucanase using a biopolymer Gum Arabic for its controlled release. Bioresour Technol 2007; 98(2): 368-72.
[http://dx.doi.org/10.1016/j.biortech.2005.12.020] [PMID: 16481159]
[79]
Bajpai SK, Jadaun M, Tiwari S. Synthesis, characterization and antimicrobial applications of zinc oxide nanoparticles loaded gum acacia/poly(SA) hydrogels. Carbohydr Polym 2016; 153: 60-5.
[http://dx.doi.org/10.1016/j.carbpol.2016.07.019] [PMID: 27561472]
[80]
Dong C, Zhang X, Cai H, Cao C. Facile and one-step synthesis of monodisperse silver nanoparticles using gum acacia in aqueous solution. J Mol Liq 2014; 196: 135-41.
[http://dx.doi.org/10.1016/j.molliq.2014.03.009]
[81]
Swarnalatha V, Esther RA, Dhamodharan R. Immobilization of α-amylase on gum acacia stabilized magnetite nanoparticles, an easily recoverable and reusable support. J Mol Catal, B Enzym 2013; 96: 6-13.
[http://dx.doi.org/10.1016/j.molcatb.2013.05.022]
[82]
Thakur M, Pandey S, Mewada A, Shah R, Oza G, Sharon M. Understanding the stability of silver nanoparticles bio-fabricated using Acacia arabica (Babool gum) and its hostile effect on microorganisms. Spectrochim Acta A Mol Biomol Spectrosc 2013; 109: 344-7.
[http://dx.doi.org/10.1016/j.saa.2013.03.044] [PMID: 23582910]
[83]
Juby KA, Dwivedi C, Kumar M, Kota S, Misra HS, Bajaj PN. Silver nanoparticle-loaded PVA/gum acacia hydrogel: Synthesis, characterization and antibacterial study. Carbohydr Polym 2012; 89(3): 906-13.
[http://dx.doi.org/10.1016/j.carbpol.2012.04.033] [PMID: 24750879]
[84]
Sreedhar B, Devi DK, Neetha AS, Kumar VP, Charry KVR. Green synthesis of gum-acacia assisted gold-hydroxyapatite nanostructures–characterization and catalytic activity. Mater Chem Phys 2015; 153: 23-31.
[http://dx.doi.org/10.1016/j.matchemphys.2014.12.031]
[85]
Patel S, Goyal A. Applications of natural polymer gum arabic: A Review. Int J Food Prop 2015; 18: 986-98.
[http://dx.doi.org/10.1080/10942912.2013.809541]
[86]
Fincher GB, Stone BA, Clarke AE. Arabinogalactan-proteins: Structure, biosynthesis and function. Annu Rev Plant Physiol 1983; 34: 47-70.
[http://dx.doi.org/10.1146/annurev.pp.34.060183.000403]
[87]
Silva DA, Maciel JS, Feitosa JPA, Paula HCB, Paula RCM. Polysaccharide based nanoparticles formation by polyeletrolytecomplexation of carboxymethylated cashew gum and chitosan. J Mater Sci 2010; 45: 5605-10.
[http://dx.doi.org/10.1007/s10853-010-4625-y]
[88]
Carvalho NS, Silva MM, Silva RO, et al. Gastroprotective properties of cashew gum, a complex heteropolysaccharide of Anacardium occidentale, in naproxen-induced gastrointestinal damage in rats. Drug Dev Res 2015; 76(3): 143-51.
[http://dx.doi.org/10.1002/ddr.21250] [PMID: 25959135]
[89]
Dias SF, Nogueira SS, de França Dourado F, et al. Acetylated cashew gum-based nanoparticles for transdermal delivery of diclofenac diethyl amine. Carbohydr Polym 2016; 143: 254-61.
[http://dx.doi.org/10.1016/j.carbpol.2016.02.004] [PMID: 27083367]
[90]
Abreu CM, Paula HC, Seabra V, Feitosa JP, Sarmento B, de Paula RC. Synthesis and characterization of non-toxic and thermo-sensitive poly(N-isopropylacrylamide)-grafted cashew gum nanoparticles as a potential epirubicin delivery matrix. Carbohydr Polym 2016; 154: 77-85.
[http://dx.doi.org/10.1016/j.carbpol.2016.08.031] [PMID: 27577899]
[91]
Pitombeira NA, Veras Neto JG, Silva DA, Feitosa JP, Paula HC, de Paula RC. Self-assembled nanoparticles of acetylated cashew gum: characterization and evaluation as potential drug carrier. Carbohydr Polym 2015; 117: 610-5.
[http://dx.doi.org/10.1016/j.carbpol.2014.09.087] [PMID: 25498678]
[92]
de Oliveira EF, Paula HC, de Paula RC. Alginate/cashew gum nanoparticles for essential oil encapsulation. Colloids Surf B Biointerfaces 2014; 113: 146-51.
[http://dx.doi.org/10.1016/j.colsurfb.2013.08.038] [PMID: 24077112]
[93]
Abreu FO, Oliveira EF, Paula HC, de Paula RC. Chitosan/cashew gum nanogels for essential oil encapsulation. Carbohydr Polym 2012; 89(4): 1277-82.
[http://dx.doi.org/10.1016/j.carbpol.2012.04.048] [PMID: 24750942]
[94]
da Silva DA, Feitosa JP, Paula HC, Regina CM. Synthesis and characterization of cashew gum/acrylic acid nanoparticles. Mater Sci Eng C 2009; 29: 437-41.
[http://dx.doi.org/10.1016/j.msec.2008.08.029]
[95]
Deasy PB, Quigley KJ. Rheological evaluation of deacetylatedgellan gum (Gelrite) for pharmaceutical use. Int J Pharm 1991; 73: 117-23.
[http://dx.doi.org/10.1016/0378-5173(91)90034-L]
[96]
De Filpo G, Palermo AM, Munno R, et al. Gellan gum/titanium dioxide nanoparticle hybrid hydrogels for the cleaning and disinfection of parchment. Int Biodet Biodegrad 2015; 103: 51-8.
[http://dx.doi.org/10.1016/j.ibiod.2015.04.012]
[97]
Kora AJ, Rastogi L. Green synthesis of palladium nanoparticles using gum ghatti (Anogeissuslatifolia) and its application as an antioxidant and catalyst. Arab J Chem 2018; 11(7): 1097-106.
[http://dx.doi.org/10.1016/j.arabjc.2015.06.024]
[98]
Mittal H, Ray SS. A study on the adsorption of methylene blue onto gum ghatti/TiO2 nanoparticles-based hydrogel nanocomposite. Int J Biol Macromol 2016; 88: 66-80.
[http://dx.doi.org/10.1016/j.ijbiomac.2016.03.032] [PMID: 26997239]
[99]
Mittal H, Ballav N, Mishra SB. Gum ghatti and Fe3O4 magnetic nanoparticles based nanocomposites for the effective adsorption of methylene blue from aqueous solution. Ind Eng Chem Res 2014; 20: 2184-92.
[http://dx.doi.org/10.1016/j.jiec.2013.09.049]
[100]
Shelly AhujaM, Kumar A. Gum ghatti-chitosan polyelectrolyte nanoparticles: preparation and characterization. Int J Biol Macromol 2013; 61: 411-5.
[http://dx.doi.org/10.1016/j.ijbiomac.2013.07.022] [PMID: 23924761]
[101]
Versari D, Daghini E, Virdis A, Ghiadoni L, Taddei S. Endothelium-dependent contractions and endothelial dysfunction in human hypertension. Br J Pharmacol 2009; 157(4): 527-36.
[http://dx.doi.org/10.1111/j.1476-5381.2009.00240.x] [PMID: 19630832]
[102]
Davel AP, Wenceslau CF, Akamine EH, et al. Endothelial dysfunction in cardiovascular and endocrine-metabolic diseases: an update. Braz J Med Biol Res 2011; 44(9): 920-32.
[http://dx.doi.org/10.1590/S0100-879X2011007500104] [PMID: 21956535]
[103]
Deb S, Ghosh K, Shetty SD. Nanoimaging in cardiovascular diseases: Current state of the art. Indian J Med Res 2015; 141(3): 285-98.
[http://dx.doi.org/10.4103/0971-5916.156557] [PMID: 25963489]
[104]
Soumya RS, Vineetha VP, Salin Raj P, Raghu KG. Beneficial properties of selenium incorporated guar gum nanoparticles against ischemia/reperfusion in cardiomyoblasts (H9c2). Metallomics 2014; 6(11): 2134-47.
[http://dx.doi.org/10.1039/C4MT00241E] [PMID: 25307064]
[105]
Ismail M, Hossain MF, Karim MF, Shekhar HU. Nanomedicine: Tiny particles and machines, from diagnosis to treatment of cardiovascular disease, provides huge achievements. Adv Biosci Biotechnol 2015; 6: 613-23.
[http://dx.doi.org/10.4236/abb.2015.69064]
[106]
Zhu K, Li J, Wang Y, Lai H, Wang C. Nanoparticles-assisted stem cell therapy for ischemic heart disease. Stem Cells Int 2016.20161384658
[http://dx.doi.org/10.1155/2016/1384658] [PMID: 26839552]
[107]
Shubhika K. Nanotechnology and medicine - The upside and the downside. Int J Drug Dev Res 2013; 5(1): 1-10.

Rights & Permissions Print Cite
© 2024 Bentham Science Publishers | Privacy Policy