Generic placeholder image

Current Analytical Chemistry

Editor-in-Chief

ISSN (Print): 1573-4110
ISSN (Online): 1875-6727

Review Article

Recent Trends in the Development of Green Microextraction Techniques for the Determination of Hazardous Organic Compounds in Wine

Author(s): Natasa P. Kalogiouri and Victoria F. Samanidou*

Volume 15, Issue 7, 2019

Page: [788 - 800] Pages: 13

DOI: 10.2174/1573411015666190328185337

Price: $65

Abstract

Background: The sample preparation is the most crucial step in the analytical method development. Taking this into account, it is easily understood why the domain of sample preparation prior to detection is rapidly developing. Following the modern trends towards the automation, miniaturization, simplification and minimization of organic solvents and sample volumes, green microextraction techniques witness rapid growth in the field of food quality and safety. In a globalized market, it is essential to face the consumers need and develop analytical methods that guarantee the quality of food products and beverages. The strive for the accurate determination of organic hazards in a famous and appreciated alcoholic beverage like wine has necessitated the development of microextraction techniques.

Objective: The objective of this review is to summarize all the recent microextraction methodologies, including solid phase extraction (SPE), solid phase microextraction (SPME), liquid-phase microextraction (LPME), dispersive liquid-liquid microextraction (DLLME), stir bar sorptive extraction (SBSE), matrix solid-phase dispersion (MSPD), single-drop microextraction (SDME) and dispersive solid phase extraction (DSPE) that were developed for the determination of hazardous organic compounds (pesticides, mycotoxins, colorants, biogenic amines, off-flavors) in wine. The analytical performance of the techniques is evaluated and their advantages and limitations are discussed.

Conclusion: An extensive investigation of these techniques remains vital through the development of novel strategies and the implication of new materials that could upgrade the selectivity for the extraction of target analytes.

Keywords: Contaminants, DLLME, DSPE, green microextraction techniques, mycotoxins, pesticides, SPME, wine.

Graphical Abstract

[1]
de Villiers, A.; Alberts, P.; Tredoux, A.G.; Nieuwoudt, H.H. Analytical techniques for wine analysis: An African perspective. A review. Anal. Chim. Acta, 2012, 730, 2-23.
[2]
Chen, B.; Wu, F-Q.; Wu, W-D.; Jin, B-H.; Xie, L-Q.; Feng, W.; Ouyang, G. Determination of 27 pesticides in wine by dispersive liquid-liquid microextraction and gas chromatography-mass spectrometry. Microchem. J., 2016, 126, 415-422.
[3]
Christ, K.L.; Burritt, R.L. Critical environmental concerns in wine production: an integrative review. J. Clean. Prod., 2013, 53, 232-242.
[4]
Rodríguez-Cabo, T.; Rodríguez, I.; Ramil, M.; Silva, A.; Cela, R. Multiclass semi-volatile compounds determination in wine by gas chromatography accurate time-of-flight mass spectrometry. J. Chrom. A, 2016, 1442, 107-117.
[5]
Kalogiouri, N.P.; Aalizadeh, R.; Thomaidis, N.S. Investigating the organic and conventional production type of olive oil with target and suspect screening by LC-QTOF-MS, a novel semi-quantification method using chemical similarity and advanced chemometrics. Anal. Bioanal. Chem., 2017, 409(23), 5413-5426.
[6]
Rutkowska, M.; Owczarek, K.; de la Guardia, M.; Płotka-Wasylka, J.; Namieśnik, J. Application of additional factors supportinh the microextraction process. Trends Analyt. Chem., 2017, 97, 107-114.
[7]
Sajid, M. Porous membrane protected micro-solid-phase extraction: A review of features, advancements and applications. Anal. Chim. Acta, 2017, 965, 36-53.
[8]
Gałuszka, A.; Migaszewski, Z.; Namiesnik, J. The 12 principles of green analytical chemistry and the SIGNIFICANCE mnemonic of green analytical practices. Trends Analyt. Chem., 2013, 50, 78-84.
[9]
Rutkowska, M.; Dubalska, K.; Konieczka, P.; Namieśnik, J. Microextraction techniques used in the procedures for determining organomercury and organotin compounds in environmental samples. Molecules, 2014, 19, 7581-7609.
[10]
Manousi, N.; Zachariadis, G.A.; Deliyanni, E.A.; Samanidou, V.F. Applications of metal-organic frameworks in food sample preparation. Molecules, 2018, 23(11), 2896.
[11]
Ma, J.; Lu, W.; Chen, L. Recent advances in dispersive liquid-liquid microextraction for organic compounds analysis in environmental water: A review. Curr. Anal. Chem., 2012, 8, 78-90.
[12]
Lancas, F.M.; Queiroz, M.E.C.; Grossi, P.; Olivares, I.R.B. Recent developments and applications of stir bar sorptive extraction. J. Sep. Sci., 2009, 32, 813-824.
[13]
Płotka-Wasylka, J.; Szczepanska, N.; de la Guardia, M.; Namiesnik, J. Miniaturized solid-phase extraction techniques. Trends Analyt. Chem., 2015, 73, 19-38.
[14]
Ahadi, A.; Partoazar, A.; Abedi-Khorasgani, M.H.; Shetab-Boushehri, S.V. Comparison of liquid-liquid extraction-thin layer chromatography with solid-phase extraction-high-performance thin layer chromatography in detection of urinary morphine. J. Biomed. Res., 2011, 25(5), 362-367.
[15]
de Melo Abreu, S.; Caboni, P.; Cabras, P.; Alves, A.; Luigi Garau, V. A comparison of a gas chromatographic with electron-capture detection and a gas chromatographic with mass spectrometric detection screening methods for the analysis of famoxadone in grapes and wines. J. Chrom. A, 2006, 1103, 362-367.
[16]
Fabiani, A.; Corzani, C.; Arfelli, G. Correlation between different clean-up methods and analytical techniques performances to detect Ochratoxin A in wine. Talanta, 2010, 83, 281-285.
[17]
Yang, C.; Lates, V.; Prieto-Simón, B.; Marty, J-L.; Yang, X. Rapid high-throughput analysis of ochratoxin A by the self-assembly of DNAzyme-aptamer conjugates in wine. Talanta, 2013, 116, 520-526.
[18]
De Jesus, C.L.; Bartley, A.; Welch, A.Z.; Berry, J.P. High incidence and levels of ochratoxin A in wines sourced from the United States. Toxins , 2018, 10(1), 1.
[19]
Franc, C.; David, F.; de Revel, G. Multi-residue off-flavour profiling in wine using stir bar sorptive extraction-thermal desorption-gas chromatography-mass spectrometry. J. Chromatogr. A, 2009, 1216, 3318-3327.
[20]
Pelit, F.O.; Ertaş, H.; Seyrani, I.; Nil Ertaş, F. Assessment of DFG-S19 method for the determination of common endocrine disruptor pesticides in wine samples with an estimation of the uncertainty of the analytical results. Food Chem., 2013, 138(1), 54-61.
[21]
Vaquero‐Fernández, L.; Sáenz‐Hernáez, A.; Sanz‐Asensio, J.; Fernández‐Zurbano, P.; Sainz‐Ramírez, M.; Pons‐Jubera, B.; López‐Alonso, M.; Epifanio‐Fernández, S-I.; Martínez‐Soria, M-T. Determination of cyprodinil and fludioxonil in the fermentative process of must by high-performance liquid chromatography-diode array detection. J. Sci. Food Agr., 2008, 88, 1943-1948.
[22]
Wan, Y.Q.; Ma, Y.Q.; Mao, X-J. Simultaneous determination of organotin compounds in white wine by gas chromatography-mass spectrometry. Anal. Lett., 2012, 45, 1799-1809.
[23]
Sun, S.; Wang, Y.; Yu, W.; Zhao, T.; Gao, S.; Kang, M.; Zhang, Y.; Zhang, H.; Yu, Y. Determination of sudan dyes in red wine and fruit juice using ionic liquid-based liquid-liquid microextraction and highperformance liquid chromatography. J. Sep. Sci., 2011, 34, 1730-1737.
[24]
Marsh, K.N.; Boxall, J.A.; Lichtenthaler, R. Room temperature ionic liquids and their mixtures—a review. Fluid Phase Equilib., 2004, 219, 93-98.
[25]
Callejón, R.M.; Ubeda, C.; Ríos-Reina, R.; Morales, M.L.; Troncoso, A.M. Recent developments in the analysis of musty odour compounds in water and wine: A review. J. Chrom. A, 2016, 1428, 72-85.
[26]
Sun, J.; He, H.; Liu, S. Determination of three chlorophenols in red wine by sweepingmicellar electrokinetic chromatography coupled with dispersive liquid-liquid microextraction and reversed phase liquid-liquid microextraction. Chin. J. Chromatogr, 2014, 32(3), 256-262.
[27]
Seidi, S.; Yamini, Y. Analytical sonochemistry; developments, applications and hyphenations of ultrasound in 20 sample preparation and analytical techniques. Cent. Eur. J. Chem., 2012, 10, 938-976.
[28]
Płotka-Wasylka, J.; Simeonov, V.; Namieśnik, J. Evaluation of the Impact of Storage Conditions on the Biogenic Amines Profile in Opened Wine Bottles. Molecules, 2018, 9(23(5))E1130
[29]
Timofeeva, I.; Kanashina, D.; Moskvin, L.; Bulatov, A. An evaporation-assisted dispersive liquid-liquid microextraction technique as a simple tool for high performance liquid chromatography tandem-mass spectrometry determination of insecticides in wine. J. Chrom. A, 2017, 1512, 107-114.
[30]
Pizarro, C.; Sáenz-González, C.; Perez-del-Notario, N.; González-Sáiz, J.M. Optimisation of a dispersive liquid-liquid microextraction method for the simultaneous determination of halophenols and haloanisoles in wines. J. Chrom. A, 2010, 1217(49), 7630-7637.
[31]
Fan, Y.; Hu, S.; Liu, S. Salting-out assisted liquid-liquid extraction coupled to dispersive liquid-liquid microextraction for the determination of chlorophenols in wine by high-performance liquid chromatography. J. Sep. Sci., 2014, 37(24), 3662-3668.
[32]
Chu, S.P.; Tseng, W.C.; Kong, P.H.; Huang, C.K.; Chen, J.H.; Chen, P.S.; Huang, S.D. Up-and-down-shaker-assisted dispersive liquid-liquid microextraction coupled with gas chromatography-mass spectrometry for the determination of fungicides in wine. Food Chem., 2015, 185, 377-382.
[33]
Tuzimski, T.; Rejczak, T.; Pieniazek, D.; Buszewicz, G.; Teresinski, G. Comparison of SPE/d-SPE and QuEChERS-based extraction procedures in terms of fungicide residue analysis in wine samples by HPLC-DAD and LC-QqQ-MS. J. AOAC Int., 2016, 99(6), 1436-1443.
[34]
Jakubus, A.; Paszkiewicz, M.; Stepnowski, P. Carbon nanotubes application in the extraction techniques of pesticides: A review. Crit. Rev. Anal. Chem., 2017, 47(1), 76-91.
[35]
Ravelo-Pérez, L.M.; Hernández-Borges, J.; Rodríguez-Delgado, M.A. Pesticides analysis by liquid chromatography and capillary electrophoresis. J. Sep. Sci., 2006, 29(17), 2557-2577.
[36]
Nozal, M.J.; Bernal, J.L.; Jiménez, J.J.; Martín, M.T.; Bernal, J. Determination of azolic fungicides in wine by solid-phase extraction and high-performance liquid chromatography-atmospheric pressure chemical ionization-mass spectrometry. J. Chrom. A., 2005, 1076(1-2), 90-96.
[37]
Słowik-Borowiec, M.; Szpyrka, E. Multiresidue analysis of pesticides in wine and grape using gas chromatography with microelectron capture and nitrogen-phosphorus detection. Food Anal. Method, 2018, 11(12), 3516-3530.
[38]
Doulia, D.S.; Anagnos, E.K.; Liapis, K.S.; Klimentzos, D.A. Effect of clarification process on the removal of pesticide residues in red wine and comparison with white wine. J. Environ. Sci. Health, 2018, B, 1-12.
[39]
Campone, L.; Piccinelli, A.L.; Celano, R.; Pagano, I.; Russo, M.; Rastrelli, L. Rapid and automated on-line solid phase extraction HPLC-MS/MS with peak focusing for the determination of ochratoxin A in wine samples. Food Chem., 2018, 244, 128-135.
[40]
Bacaloni, A.; Cavaliere, C.; Faberi, A.; Pastorini, E.; Samperi, R.; Lagana, A. Automated on-line solid-phase extraction−liquid chromatography−electrospray tandem mass spectrometry method for the determination of ochratoxin A in wine and beer. J. Agric. Food Chem., 2005, 53, 5518-5525.
[41]
Castro, G.; Pérez-Mayán, L.; Rodríguez-Cabo, T.; Rodríguez, I.; Ramil, M.; Cela, R. Multianalyte, high-throughput liquid chromatography tandem mass spectrometry method for the sensitive determination of fungicides and insecticides in wine. Anal. Bioanal. Chem., 2017, 410(3), 1139-1150.
[42]
Montes, R.; Rodríguez, I.; Ramil, M.; Rubí, E.; Cela, R. Solid-phase extraction followed by dispersive liquid-liquid microextraction for the sensitive determination of selected fungicides in wine. J. Chrom. A, 2016, 1442, 107-117.
[43]
Carpinteiro, I.; Abuín, B.; Rodríguez, I.; Ramil, M.; Cela, R. Mixed-mode solid-phase extraction followed by dispersive liquid-liquid microextraction for the sensitive determination of ethylphenols in red wines. J. Chrom. A., 2012, 1229, 79-85.
[44]
Jin, B.; Xie, L.; Guo, Y.; Pang, G. Multi-residue detection of pesticides in juice and fruit wine: A review of extraction and detection methods. Food Res. Int., 2012, 46, 399-409.
[45]
Zambonin, C.G.; Quinto, M.; De Vietro, N.; Palmisano, F. Solid-phase microextraction - gas chromatography mass spectrometry: A fast and simple screening method for the assessment of organophosphorus pesticides residues in wine and fruit juices. Food Chem., 2004, 86, 269-274.
[46]
Andrade, M.A.; Lancas, F.M. Determination of Ochratoxin A in wine by packed in-tube solid phase microextraction followed by high performance liquid chromatography coupled to tandem mass spectrometry. J. Chrom. A, 2017, 1493, 41-48.
[47]
Aresta, A.; Vatinno, R.; Palmisano, F.; Zambonin, C.G. Determination of Ochratoxin A in wine at sub ng/mL levels by solid-phase microextraction coupled to liquid chromatography with fluorescence detection; J. Chrom. A, 2006, pp. 196-201.
[48]
Papageorgiou, M.; Lambropoulou, D.; Morrison, C.; Namieśnik, J. PłotkaWasylka, J. Direct solid phase microextraction combined with gas chromatography - mass spectrometry for the determination of biogenic amines in wine. Talanta, 2018.
[49]
Ravelo-Pérez, L.M.; Hernández-Borges, J.; Borges-Miquel, T.M.; Rodríguez-Delgado, M.A. Solid-phase microextraction and sample stacking micellar electrokinetic chromatography for the analysis of pesticide residues in red wines. Food Chem., 2008, 111, 764-770.
[50]
Ravelo-Pérez, L.M.; Hernández-Borges, J.; Borges-Miquel, T.M.; Rodríguez-Delgado, M.A. Multiple pesticide analysis in wine by MEKC combined with solid-phase microextraction and sample stacking. Electrophoresis, 2007, 28(22), 4072-4081.
[51]
Woźniakiewicz, M. Woźniakiewicz, A.; Mateusz Nowak, P.; Kłodzińska, E.; Namieśnik, J.; Płotka-Wasylka, J. CE-MS and GC-MS as Green and Complementary Methods for the Analysis of Biogenic Amines in Wine. Food Anal. Methods, 2018, 11, 2614-2627.
[52]
McCullum, C.; Tchounwou, P.; Ding, L-S.; Liao, X.; Liu, Y.M. Extraction of aflatoxins from liquid foodstuff samples with polydopamine-coated superparamagnetic nanoparticles for HPLCMS/MS analysis. J. Agric. Food Chem., 2014, 62, 4261-4267.
[53]
Baltussen, E.; Sandra, P.; David, F.; Cramers, C. Stir bar sorptive extraction (SBSE), a novel extraction technique for aqueous samples: Theory and principles. J. Microcolumn Sep., 1999, 11, 737-747.
[54]
Majors, R.E.; Bicchi, C.; Liberto, E.; Cordero, C.; Sgorbini, B.; Rubiolo, P. Stir Bar Sorptive Extraction (SBSE) and Headspace Sorptive Extraction (HSSE): An Overview. North America: LCGC, 2009, 27(5), 376-390.
[55]
Franc, C.; David, F.; de Revel, G. Multi-residue off-flavour profiling in wine using stir bar sorptive extraction-thermal desorption-gas chromatography-mass spectrometry. J. Chrom. A, 2009, 1216, 3318-3327.
[56]
Vinas, P.; Aguinaga, N.; Campillo, N.; Hernandez-Cordoba, M. Comparison of stir bar sorptive extraction and membrane-assisted solvent extraction for the ultra-performance liquid chromatographic determination of oxazole fungicide residues in wines and juices. J. Chrom. A, 2008, 1194, 178-183.
[57]
Barker, S.A. Matrix solid-phase dispersion. J. Chrom. A, 2000, 885(1-2), 115-127.
[58]
Kristenson, E.M.; Brinkman, U.A.T.; Ramos, L. Recent advances in matrix solid-phase dispersion. Trends Analyt. Chem., 2006, 25(2), 96-111.
[59]
Capriotti, A.L.; Cavaliere, C.; Giansanti, P.; Gubbiotti, R.; Samperi, R.; Laganà, A. Recent developments in matrix solid-phase dispersion extraction. J. Chromatogr. A, 2010, 1217(16), 2521-2532.
[60]
Zhu, X.; Qi, X.; Wang, J.; Yue, J.; Sun, Z.; Lei, W. Determination of procymidone, pentachloroaniline and methyl-pentachloro-phenylsulfide residues in wine by MSPD-GC-ECD. Chromatographia, 2007, 65, 625-628.
[61]
Montes, R.; Canosa, P.; Pablo Lamas, J.; Piñeiro, A.; Orriols, I.; Cela, R.; Rodríguez, I. Matrix solid-phase dispersion and solid-phase microextraction applied to study the distribution of fenbutatin oxide in grapes and white wine. Anal. Bioanal. Chem., 2009, 395, 2601-2610.
[62]
Kokosa, J.M. Chapter Thirteen - selecting an appropriate solvent microextraction mode for a green analytical method. Compr. Anal. Chem., 2017, 76, 403-425.
[63]
González-Peñas, E.; Leache, C.; Viscarret, M.; Pérez de Obanos, A.; Araguás, C.; López de Cerain, A. Determination of ochratoxin A in wine using liquid-phase microextraction combined with liquid chromatography with fluorescence detection. J. Chrom. A, 2004, 1025, 163-168.
[64]
Bolanos, P.P.; Romero-González, R.; Garrido Frenich, A.; Martínez Vidal, J.L. Application of hollow fibre liquid phase microextraction for the multiresidue determination of pesticides in alcoholic beverages by ultra-high pressure liquid chromatography coupled to tandem mass spectrometry. J. Chromatogr. A, 2008, 1208, 16-24.
[65]
Hou, L.; Lee, H.K. Determination of pesticides in soil by liquid phase microextraction and gas chromatography mass spectrometry. J. Chrom. A, 2004, 1038, 37-42.
[66]
Zhao, E.; Han, L.; Jiang, S.; Wang, Q.; Zhou, Z. Application of a single-drop microextraction for the analysis of organophosphorus pesticides in juice. J. Chrom. A, 2006, 12(1114 (2)), 269-273.
[67]
Psillakis, E.; Kalogerakis, N. Developments in single-drop microextraction. Trends Analyt. Chem., 2002, 21(1), 53-63.
[68]
Martendal, E.; Budziak, D.; Carasek, E. Application of fractional factorial experimental and Box-Behnken designs for optimization of single-drop microextraction of 2,4,6-trichloroanisole and 2,4,6-tribromoanisole from wine samples. J. Chrom. A, 2007, 1148, 131-136.
[69]
dos Anjos, J.P.; de Andrade, J.B. Simultaneous determination of pesticide multiresidues in white wine and rosé wine by SDME/GC-MS. Microchem. J., 2015, 120, 69-76.
[70]
Garbi, A.; Sakkas, V.; Fiamegos, Y.C.; Stalikas, C.D.; Albanis, T. Sensitive determination of pesticides residues in wine samples with the aid of single-drop microextraction and response surface methodology. Talanta, 2010, 82, 1286-1291.
[71]
Dušek, M.; Jandovská, V.; Olšovská, J. Analysis of multiresidue pesticides in dried hops by LC-MS/MS using QuEChERS extraction together with dSPE clean-up. J. Inst. Brew., 2018, 124(3), 222-229.
[72]
Islas, G.; Ibarra, I.S.; Hernandez, P.; Miranda, J.M.; Cepeda, A. Dispersive solid phase extraction for the analysis of veterinary drugs applied to food samples: A review. Int. J. Anal. Chem., 2017, 20178215271
[73]
Lawal, A.; Wong, R.C.S.; Tan, G.H.; Abdulra’Uf, L.B.; Alsharif, A.M.A. Recent modifications and validation of QuEChERS-dSPE coupled to LC-MS and GC-MS instruments for determination of pesticide/agrochemical residues in fruits and vegetables. Review J. Chromatogr. Sci., 2018, 56(7), 656-669. .
[74]
Anastassiades, M.; Lehotay, S.; Stajnbaher, D.; Schenck, F.J. Fast and easy multiresidue method employing acetonitrile extraction/ partitioning and “dispersive solid-phase extraction” for the determination of pesticide residues in produce. J. AOAC Int., 2003, 86, 412-431.
[75]
Patil, S.H.; Banerjee, K.; Dasgupta, S.; Oulkar, D.P.; Patil, S.B.; Jadhav, M.R.; Savant, R.H.; Adsule, P.G.; Deshmukh, M.B. Multiresidue analysis of 83 pesticides and 12 dioxin-like polychlorinated biphenyls in wine by gas chromatography-time-of-flight mass spectrometry. J. Chrom. A, 2009, 1216, 2307-2319.
[76]
Lestingi, C.; Tavoloni, T.; Bardeggia, V.; Perugini, M.; Piersanti, A. A fit-for-purpose method to monitor 16 European Union PAHs in food: results of five years of official food control in two Italian regions. Food Addit. Contam. - Part A, 2017, 34(7), 1140-1152.
[77]
Picó, Y. Chapter Four - Pressurized liquid extraction of organic contaminants in environmental and food samples. Compr. Anal. Chem., 2017, 76, 83-110.
[78]
Celeiro, M.; Llompart, M.; Pablo Lamas, J.; Lores, M.; Garcia-Jares, C.; Dagnac, T. Determination of fungicides in white grape bagasse by pressurized liquid extraction and gas chromatography tandem mass spectrometry. J. Chrom. A., 2014, 1343, 18-25.

Rights & Permissions Print Cite
© 2024 Bentham Science Publishers | Privacy Policy