[1]
de Villiers, A.; Alberts, P.; Tredoux, A.G.; Nieuwoudt, H.H. Analytical techniques for wine analysis: An African perspective. A review. Anal. Chim. Acta, 2012, 730, 2-23.
[2]
Chen, B.; Wu, F-Q.; Wu, W-D.; Jin, B-H.; Xie, L-Q.; Feng, W.; Ouyang, G. Determination of 27 pesticides in wine by dispersive liquid-liquid microextraction and gas chromatography-mass spectrometry. Microchem. J., 2016, 126, 415-422.
[3]
Christ, K.L.; Burritt, R.L. Critical environmental concerns in wine production: an integrative review. J. Clean. Prod., 2013, 53, 232-242.
[4]
Rodríguez-Cabo, T.; Rodríguez, I.; Ramil, M.; Silva, A.; Cela, R. Multiclass semi-volatile compounds determination in wine by gas chromatography accurate time-of-flight mass spectrometry. J. Chrom. A, 2016, 1442, 107-117.
[5]
Kalogiouri, N.P.; Aalizadeh, R.; Thomaidis, N.S. Investigating the organic and conventional production type of olive oil with target and suspect screening by LC-QTOF-MS, a novel semi-quantification method using chemical similarity and advanced chemometrics. Anal. Bioanal. Chem., 2017, 409(23), 5413-5426.
[6]
Rutkowska, M.; Owczarek, K.; de la Guardia, M.; Płotka-Wasylka, J.; Namieśnik, J. Application of additional factors supportinh the microextraction process. Trends Analyt. Chem., 2017, 97, 107-114.
[7]
Sajid, M. Porous membrane protected micro-solid-phase extraction: A review of features, advancements and applications. Anal. Chim. Acta, 2017, 965, 36-53.
[8]
Gałuszka, A.; Migaszewski, Z.; Namiesnik, J. The 12 principles of green analytical chemistry and the SIGNIFICANCE mnemonic of green analytical practices. Trends Analyt. Chem., 2013, 50, 78-84.
[9]
Rutkowska, M.; Dubalska, K.; Konieczka, P.; Namieśnik, J. Microextraction techniques used in the procedures for determining organomercury and organotin compounds in environmental samples. Molecules, 2014, 19, 7581-7609.
[10]
Manousi, N.; Zachariadis, G.A.; Deliyanni, E.A.; Samanidou, V.F. Applications of metal-organic frameworks in food sample preparation. Molecules, 2018, 23(11), 2896.
[11]
Ma, J.; Lu, W.; Chen, L. Recent advances in dispersive liquid-liquid microextraction for organic compounds analysis in environmental water: A review. Curr. Anal. Chem., 2012, 8, 78-90.
[12]
Lancas, F.M.; Queiroz, M.E.C.; Grossi, P.; Olivares, I.R.B. Recent developments and applications of stir bar sorptive extraction. J. Sep. Sci., 2009, 32, 813-824.
[13]
Płotka-Wasylka, J.; Szczepanska, N.; de la Guardia, M.; Namiesnik, J. Miniaturized solid-phase extraction techniques. Trends Analyt. Chem., 2015, 73, 19-38.
[14]
Ahadi, A.; Partoazar, A.; Abedi-Khorasgani, M.H.; Shetab-Boushehri, S.V. Comparison of liquid-liquid extraction-thin layer chromatography with solid-phase extraction-high-performance thin layer chromatography in detection of urinary morphine. J. Biomed. Res., 2011, 25(5), 362-367.
[15]
de Melo Abreu, S.; Caboni, P.; Cabras, P.; Alves, A.; Luigi Garau, V. A comparison of a gas chromatographic with electron-capture detection and a gas chromatographic with mass spectrometric detection screening methods for the analysis of famoxadone in grapes and wines. J. Chrom. A, 2006, 1103, 362-367.
[16]
Fabiani, A.; Corzani, C.; Arfelli, G. Correlation between different clean-up methods and analytical techniques performances to detect Ochratoxin A in wine. Talanta, 2010, 83, 281-285.
[17]
Yang, C.; Lates, V.; Prieto-Simón, B.; Marty, J-L.; Yang, X. Rapid high-throughput analysis of ochratoxin A by the self-assembly of DNAzyme-aptamer conjugates in wine. Talanta, 2013, 116, 520-526.
[18]
De Jesus, C.L.; Bartley, A.; Welch, A.Z.; Berry, J.P. High incidence and levels of ochratoxin A in wines sourced from the United States. Toxins , 2018, 10(1), 1.
[19]
Franc, C.; David, F.; de Revel, G. Multi-residue off-flavour profiling in wine using stir bar sorptive extraction-thermal desorption-gas chromatography-mass spectrometry. J. Chromatogr. A, 2009, 1216, 3318-3327.
[20]
Pelit, F.O.; Ertaş, H.; Seyrani, I.; Nil Ertaş, F. Assessment of DFG-S19 method for the determination of common endocrine disruptor pesticides in wine samples with an estimation of the uncertainty of the analytical results. Food Chem., 2013, 138(1), 54-61.
[21]
Vaquero‐Fernández, L.; Sáenz‐Hernáez, A.; Sanz‐Asensio, J.; Fernández‐Zurbano, P.; Sainz‐Ramírez, M.; Pons‐Jubera, B.; López‐Alonso, M.; Epifanio‐Fernández, S-I.; Martínez‐Soria, M-T. Determination of cyprodinil and fludioxonil in the fermentative process of must by high-performance liquid chromatography-diode array detection. J. Sci. Food Agr., 2008, 88, 1943-1948.
[22]
Wan, Y.Q.; Ma, Y.Q.; Mao, X-J. Simultaneous determination of organotin compounds in white wine by gas chromatography-mass spectrometry. Anal. Lett., 2012, 45, 1799-1809.
[23]
Sun, S.; Wang, Y.; Yu, W.; Zhao, T.; Gao, S.; Kang, M.; Zhang, Y.; Zhang, H.; Yu, Y. Determination of sudan dyes in red wine and fruit juice using ionic liquid-based liquid-liquid microextraction and highperformance liquid chromatography. J. Sep. Sci., 2011, 34, 1730-1737.
[24]
Marsh, K.N.; Boxall, J.A.; Lichtenthaler, R. Room temperature ionic liquids and their mixtures—a review. Fluid Phase Equilib., 2004, 219, 93-98.
[25]
Callejón, R.M.; Ubeda, C.; Ríos-Reina, R.; Morales, M.L.; Troncoso, A.M. Recent developments in the analysis of musty odour compounds in water and wine: A review. J. Chrom. A, 2016, 1428, 72-85.
[26]
Sun, J.; He, H.; Liu, S. Determination of three chlorophenols in red wine by sweepingmicellar electrokinetic chromatography coupled with dispersive liquid-liquid microextraction and reversed phase liquid-liquid microextraction. Chin. J. Chromatogr, 2014, 32(3), 256-262.
[27]
Seidi, S.; Yamini, Y. Analytical sonochemistry; developments, applications and hyphenations of ultrasound in 20 sample preparation and analytical techniques. Cent. Eur. J. Chem., 2012, 10, 938-976.
[28]
Płotka-Wasylka, J.; Simeonov, V.; Namieśnik, J. Evaluation of the Impact of Storage Conditions on the Biogenic Amines Profile in Opened Wine Bottles. Molecules, 2018, 9(23(5))E1130
[29]
Timofeeva, I.; Kanashina, D.; Moskvin, L.; Bulatov, A. An evaporation-assisted dispersive liquid-liquid microextraction technique as a simple tool for high performance liquid chromatography tandem-mass spectrometry determination of insecticides in wine. J. Chrom. A, 2017, 1512, 107-114.
[30]
Pizarro, C.; Sáenz-González, C.; Perez-del-Notario, N.; González-Sáiz, J.M. Optimisation of a dispersive liquid-liquid microextraction method for the simultaneous determination of halophenols and haloanisoles in wines. J. Chrom. A, 2010, 1217(49), 7630-7637.
[31]
Fan, Y.; Hu, S.; Liu, S. Salting-out assisted liquid-liquid extraction coupled to dispersive liquid-liquid microextraction for the determination of chlorophenols in wine by high-performance liquid chromatography. J. Sep. Sci., 2014, 37(24), 3662-3668.
[32]
Chu, S.P.; Tseng, W.C.; Kong, P.H.; Huang, C.K.; Chen, J.H.; Chen, P.S.; Huang, S.D. Up-and-down-shaker-assisted dispersive liquid-liquid microextraction coupled with gas chromatography-mass spectrometry for the determination of fungicides in wine. Food Chem., 2015, 185, 377-382.
[33]
Tuzimski, T.; Rejczak, T.; Pieniazek, D.; Buszewicz, G.; Teresinski, G. Comparison of SPE/d-SPE and QuEChERS-based extraction procedures in terms of fungicide residue analysis in wine samples by HPLC-DAD and LC-QqQ-MS. J. AOAC Int., 2016, 99(6), 1436-1443.
[34]
Jakubus, A.; Paszkiewicz, M.; Stepnowski, P. Carbon nanotubes application in the extraction techniques of pesticides: A review. Crit. Rev. Anal. Chem., 2017, 47(1), 76-91.
[35]
Ravelo-Pérez, L.M.; Hernández-Borges, J.; Rodríguez-Delgado, M.A. Pesticides analysis by liquid chromatography and capillary electrophoresis. J. Sep. Sci., 2006, 29(17), 2557-2577.
[36]
Nozal, M.J.; Bernal, J.L.; Jiménez, J.J.; Martín, M.T.; Bernal, J. Determination of azolic fungicides in wine by solid-phase extraction and high-performance liquid chromatography-atmospheric pressure chemical ionization-mass spectrometry. J. Chrom. A., 2005, 1076(1-2), 90-96.
[37]
Słowik-Borowiec, M.; Szpyrka, E. Multiresidue analysis of pesticides in wine and grape using gas chromatography with microelectron capture and nitrogen-phosphorus detection. Food Anal. Method, 2018, 11(12), 3516-3530.
[38]
Doulia, D.S.; Anagnos, E.K.; Liapis, K.S.; Klimentzos, D.A. Effect of clarification process on the removal of pesticide residues in red wine and comparison with white wine. J. Environ. Sci. Health, 2018, B, 1-12.
[39]
Campone, L.; Piccinelli, A.L.; Celano, R.; Pagano, I.; Russo, M.; Rastrelli, L. Rapid and automated on-line solid phase extraction HPLC-MS/MS with peak focusing for the determination of ochratoxin A in wine samples. Food Chem., 2018, 244, 128-135.
[40]
Bacaloni, A.; Cavaliere, C.; Faberi, A.; Pastorini, E.; Samperi, R.; Lagana, A. Automated on-line solid-phase extraction−liquid chromatography−electrospray tandem mass spectrometry method for the determination of ochratoxin A in wine and beer. J. Agric. Food Chem., 2005, 53, 5518-5525.
[41]
Castro, G.; Pérez-Mayán, L.; Rodríguez-Cabo, T.; Rodríguez, I.; Ramil, M.; Cela, R. Multianalyte, high-throughput liquid chromatography tandem mass spectrometry method for the sensitive determination of fungicides and insecticides in wine. Anal. Bioanal. Chem., 2017, 410(3), 1139-1150.
[42]
Montes, R.; Rodríguez, I.; Ramil, M.; Rubí, E.; Cela, R. Solid-phase extraction followed by dispersive liquid-liquid microextraction for the sensitive determination of selected fungicides in wine. J. Chrom. A, 2016, 1442, 107-117.
[43]
Carpinteiro, I.; Abuín, B.; Rodríguez, I.; Ramil, M.; Cela, R. Mixed-mode solid-phase extraction followed by dispersive liquid-liquid microextraction for the sensitive determination of ethylphenols in red wines. J. Chrom. A., 2012, 1229, 79-85.
[44]
Jin, B.; Xie, L.; Guo, Y.; Pang, G. Multi-residue detection of pesticides in juice and fruit wine: A review of extraction and detection methods. Food Res. Int., 2012, 46, 399-409.
[45]
Zambonin, C.G.; Quinto, M.; De Vietro, N.; Palmisano, F. Solid-phase microextraction - gas chromatography mass spectrometry: A fast and simple screening method for the assessment of organophosphorus pesticides residues in wine and fruit juices. Food Chem., 2004, 86, 269-274.
[46]
Andrade, M.A.; Lancas, F.M. Determination of Ochratoxin A in wine by packed in-tube solid phase microextraction followed by high performance liquid chromatography coupled to tandem mass spectrometry. J. Chrom. A, 2017, 1493, 41-48.
[47]
Aresta, A.; Vatinno, R.; Palmisano, F.; Zambonin, C.G. Determination of Ochratoxin A in wine at sub ng/mL levels by solid-phase microextraction coupled to liquid chromatography with fluorescence detection; J. Chrom. A, 2006, pp. 196-201.
[48]
Papageorgiou, M.; Lambropoulou, D.; Morrison, C.; Namieśnik, J. PłotkaWasylka, J. Direct solid phase microextraction combined with gas chromatography - mass spectrometry for the determination of biogenic amines in wine. Talanta, 2018.
[49]
Ravelo-Pérez, L.M.; Hernández-Borges, J.; Borges-Miquel, T.M.; Rodríguez-Delgado, M.A. Solid-phase microextraction and sample stacking micellar electrokinetic chromatography for the analysis of pesticide residues in red wines. Food Chem., 2008, 111, 764-770.
[50]
Ravelo-Pérez, L.M.; Hernández-Borges, J.; Borges-Miquel, T.M.; Rodríguez-Delgado, M.A. Multiple pesticide analysis in wine by MEKC combined with solid-phase microextraction and sample stacking. Electrophoresis, 2007, 28(22), 4072-4081.
[51]
Woźniakiewicz, M. Woźniakiewicz, A.; Mateusz Nowak, P.; Kłodzińska, E.; Namieśnik, J.; Płotka-Wasylka, J. CE-MS and GC-MS as Green and Complementary Methods for the Analysis of Biogenic Amines in Wine. Food Anal. Methods, 2018, 11, 2614-2627.
[52]
McCullum, C.; Tchounwou, P.; Ding, L-S.; Liao, X.; Liu, Y.M. Extraction of aflatoxins from liquid foodstuff samples with polydopamine-coated superparamagnetic nanoparticles for HPLCMS/MS analysis. J. Agric. Food Chem., 2014, 62, 4261-4267.
[53]
Baltussen, E.; Sandra, P.; David, F.; Cramers, C. Stir bar sorptive extraction (SBSE), a novel extraction technique for aqueous samples: Theory and principles. J. Microcolumn Sep., 1999, 11, 737-747.
[54]
Majors, R.E.; Bicchi, C.; Liberto, E.; Cordero, C.; Sgorbini, B.; Rubiolo, P. Stir Bar Sorptive Extraction (SBSE) and Headspace Sorptive Extraction (HSSE): An Overview. North America: LCGC, 2009, 27(5), 376-390.
[55]
Franc, C.; David, F.; de Revel, G. Multi-residue off-flavour profiling in wine using stir bar sorptive extraction-thermal desorption-gas chromatography-mass spectrometry. J. Chrom. A, 2009, 1216, 3318-3327.
[56]
Vinas, P.; Aguinaga, N.; Campillo, N.; Hernandez-Cordoba, M. Comparison of stir bar sorptive extraction and membrane-assisted solvent extraction for the ultra-performance liquid chromatographic determination of oxazole fungicide residues in wines and juices. J. Chrom. A, 2008, 1194, 178-183.
[57]
Barker, S.A. Matrix solid-phase dispersion. J. Chrom. A, 2000, 885(1-2), 115-127.
[58]
Kristenson, E.M.; Brinkman, U.A.T.; Ramos, L. Recent advances in matrix solid-phase dispersion. Trends Analyt. Chem., 2006, 25(2), 96-111.
[59]
Capriotti, A.L.; Cavaliere, C.; Giansanti, P.; Gubbiotti, R.; Samperi, R.; Laganà, A. Recent developments in matrix solid-phase dispersion extraction. J. Chromatogr. A, 2010, 1217(16), 2521-2532.
[60]
Zhu, X.; Qi, X.; Wang, J.; Yue, J.; Sun, Z.; Lei, W. Determination of procymidone, pentachloroaniline and methyl-pentachloro-phenylsulfide residues in wine by MSPD-GC-ECD. Chromatographia, 2007, 65, 625-628.
[61]
Montes, R.; Canosa, P.; Pablo Lamas, J.; Piñeiro, A.; Orriols, I.; Cela, R.; Rodríguez, I. Matrix solid-phase dispersion and solid-phase microextraction applied to study the distribution of fenbutatin oxide in grapes and white wine. Anal. Bioanal. Chem., 2009, 395, 2601-2610.
[62]
Kokosa, J.M. Chapter Thirteen - selecting an appropriate solvent microextraction mode for a green analytical method. Compr. Anal. Chem., 2017, 76, 403-425.
[63]
González-Peñas, E.; Leache, C.; Viscarret, M.; Pérez de Obanos, A.; Araguás, C.; López de Cerain, A. Determination of ochratoxin A in wine using liquid-phase microextraction combined with liquid chromatography with fluorescence detection. J. Chrom. A, 2004, 1025, 163-168.
[64]
Bolanos, P.P.; Romero-González, R.; Garrido Frenich, A.; Martínez Vidal, J.L. Application of hollow fibre liquid phase microextraction for the multiresidue determination of pesticides in alcoholic beverages by ultra-high pressure liquid chromatography coupled to tandem mass spectrometry. J. Chromatogr. A, 2008, 1208, 16-24.
[65]
Hou, L.; Lee, H.K. Determination of pesticides in soil by liquid phase microextraction and gas chromatography mass spectrometry. J. Chrom. A, 2004, 1038, 37-42.
[66]
Zhao, E.; Han, L.; Jiang, S.; Wang, Q.; Zhou, Z. Application of a single-drop microextraction for the analysis of organophosphorus pesticides in juice. J. Chrom. A, 2006, 12(1114 (2)), 269-273.
[67]
Psillakis, E.; Kalogerakis, N. Developments in single-drop microextraction. Trends Analyt. Chem., 2002, 21(1), 53-63.
[68]
Martendal, E.; Budziak, D.; Carasek, E. Application of fractional factorial experimental and Box-Behnken designs for optimization of single-drop microextraction of 2,4,6-trichloroanisole and 2,4,6-tribromoanisole from wine samples. J. Chrom. A, 2007, 1148, 131-136.
[69]
dos Anjos, J.P.; de Andrade, J.B. Simultaneous determination of pesticide multiresidues in white wine and rosé wine by SDME/GC-MS. Microchem. J., 2015, 120, 69-76.
[70]
Garbi, A.; Sakkas, V.; Fiamegos, Y.C.; Stalikas, C.D.; Albanis, T. Sensitive determination of pesticides residues in wine samples with the aid of single-drop microextraction and response surface methodology. Talanta, 2010, 82, 1286-1291.
[71]
Dušek, M.; Jandovská, V.; Olšovská, J. Analysis of multiresidue pesticides in dried hops by LC-MS/MS using QuEChERS extraction together with dSPE clean-up. J. Inst. Brew., 2018, 124(3), 222-229.
[72]
Islas, G.; Ibarra, I.S.; Hernandez, P.; Miranda, J.M.; Cepeda, A. Dispersive solid phase extraction for the analysis of veterinary drugs applied to food samples: A review. Int. J. Anal. Chem., 2017, 20178215271
[73]
Lawal, A.; Wong, R.C.S.; Tan, G.H.; Abdulra’Uf, L.B.; Alsharif, A.M.A. Recent modifications and validation of QuEChERS-dSPE coupled to LC-MS and GC-MS instruments for determination of pesticide/agrochemical residues in fruits and vegetables. Review J. Chromatogr. Sci., 2018, 56(7), 656-669. .
[74]
Anastassiades, M.; Lehotay, S.; Stajnbaher, D.; Schenck, F.J. Fast and easy multiresidue method employing acetonitrile extraction/ partitioning and “dispersive solid-phase extraction” for the determination of pesticide residues in produce. J. AOAC Int., 2003, 86, 412-431.
[75]
Patil, S.H.; Banerjee, K.; Dasgupta, S.; Oulkar, D.P.; Patil, S.B.; Jadhav, M.R.; Savant, R.H.; Adsule, P.G.; Deshmukh, M.B. Multiresidue analysis of 83 pesticides and 12 dioxin-like polychlorinated biphenyls in wine by gas chromatography-time-of-flight mass spectrometry. J. Chrom. A, 2009, 1216, 2307-2319.
[76]
Lestingi, C.; Tavoloni, T.; Bardeggia, V.; Perugini, M.; Piersanti, A. A fit-for-purpose method to monitor 16 European Union PAHs in food: results of five years of official food control in two Italian regions. Food Addit. Contam. - Part A, 2017, 34(7), 1140-1152.
[77]
Picó, Y. Chapter Four - Pressurized liquid extraction of organic contaminants in environmental and food samples. Compr. Anal. Chem., 2017, 76, 83-110.
[78]
Celeiro, M.; Llompart, M.; Pablo Lamas, J.; Lores, M.; Garcia-Jares, C.; Dagnac, T. Determination of fungicides in white grape bagasse by pressurized liquid extraction and gas chromatography tandem mass spectrometry. J. Chrom. A., 2014, 1343, 18-25.