[3]
Torre, L.A.; Bray, F.; Siegel, R.L.; Ferlay, J.; Lortet-Tieulent, J.; Jemal, A. Global cancer statistics, 2012. CA Cancer J. Clin., 2015, 2, 87-108.
[4]
Torre, L.A.; Siegel, R.L.; Ward, E.M.; Jemal, A. Global cancer incidence and mortality rates and trends--an update. Cancer Epidemiol. Biomarkers Prev., 2016, 1, 16-27.
[5]
Bray, F.; Ferlay, J.; Soerjomataram, I.; Siegel, R.L.; Torre, L.A.; Jemal, A. Global cancer statistics 2018: GLOBOCAN estimates of incidence and mortality worldwide for 36 cancers in 185 countries. CA Cancer J. Clin., 2018, 10, 21492.
[6]
Dondi, M.; Kashyap, R.; Paez, D.; Pascual, T.; Zaknun, J.; Bastos, F.M.; Pynda, Y. Trends in nuclear medicine in developing countries. J. Nucl. Med., 2011, 2089193
[7]
Paez, D.; Orellana, P.; Gutierrez, C.; Ramirez, R.; Mut, F.; Torres, L. Current status of nuclear medicine practice in latin America and the caribbean. J. Nucl. Med., 2015, 10, 1629-1634.
[8]
Paez, D.; Becic, T.; Bhonsle, U.; Jalilian, A.R.; Nuñez-Miller, R.; Osso, J.A. Current status of nuclear medicine practice in the middle east. Semin. Nucl. Med., 2016, 4, 265-272.
[9]
Brandon, D.; Alazraki, A.; Halkar, R.K.; Alazraki, N.P. The role of single-photon emission computed tomography and SPECT/computed tomography in oncologic imaging. Semin. Oncol., 2011, 1, 87-108.
[10]
Patel, C.N.; Chowdhury, F.U.; Scarsbrook, A.F. Hybrid SPECT/CT: the end of “unclear” medicine. Postgrad. Med. J., 2009, 1009, 606-613.
[12]
Van der Marck, S.C.; Koning, A.J.; Charlton, K.E. The options for the future production of the medical isotope 99 Mo. Eur. J. Nucl. Med. Mol. Imaging, 2010, 1817-1823.
[13]
Derlin, T.; Grünwald, V.; Steinbach, J.; Wester, H-J.; Ross, T.L. Molecular imaging in oncology using positron emission tomography. Dtsch. Arztebl. Int., 2018, 11, 175-181.
[14]
Vaquero, J.J.; Kinahan, P. Positron emission tomographY: Current challenges and opportunities for technological advances in clinical and preclinical imaging systems. Annu. Rev. Biomed. Eng., 2015, 1, 385-414.
[15]
Gholamrezanejhad, A.; Mirpour, S.; Mariani, G. Future of nuclear medicine: SPECT versus PET. J. Nucl. Med., 2009, 7, 16-18.
[16]
Hicks, R.J.; Hofman, M.S. Is There Still a Role for SPECT-CT in Oncology in the PET-CT Era? Nat. Rev. Clin. Oncol., 2012, 12, 712-720.
[17]
Rahmim, A.; Zaidi, H. PET versus SPECT: strengths, limitations and challenges. Nucl. Med. Commun., 2008, 3, 193-207.
[18]
Healy, B.J.; van der Merwe, D.; Christaki, K.E.; Meghzifene, A. Cobalt-60 machines and medical linear accelerators: Competing technologies for external beam radiotherapy. Clin. Oncol., 2017, 2, 110-115.
[21]
Souza, C.D.; Zeituni, C.A.; Moura, J.A.; Moura, E.S.; Nagatomi, H.; Feher, A.; Hilario, K.F.; Rostelato, M.E.C.M. Brachytherapy
with 125-Iodine sources: transport and radiation protection, INAC - International Nuclear Atlantic Conference, Rio de Janeiro -
Brazil. 2009.
[22]
Costa, O.L.; Calvo, W.A.P.; Zeituni, C.A.; Rostelato, M.E.C.M.; Moura, J.A.; Feher, A.; Souza, C.D.; Somessari, S.L. A study about the measurement method of the homogeneity of radioactivity along an iridium-192 wire used in brachytherapy. Nukleonica, 2014, 1(59), 3-6.
[23]
Strom, T.J.; Wilder, R.B.; Fernandez, D.C.; Mellon, E.A.; Saini, A.S.; Hunt, D.C.; Biagioli, M.C. High-dose-rate brachytherapy with or without intensity modulated radiation therapy as salvage treatment for an isolated, gross local recurrence of prostate cancer post-prostatectomy. Brachytherapy, 2014, 2, 123-127.
[24]
Zhang, W.; Li, J.; Li, R.; Zhang, Y.; Han, M.; Ma, W. Efficacy and safety of iodine-125 radioactive seeds brachytherapy for advanced non–small cell lung cancer; A meta-analysis. Brachytherapy, 2018, 2, 439-448.
[25]
Zalutsky, M.R.; Pozzi, O.R. Radioimmunotherapy with alpha-particle emitting radionuclides. Q. J. Nucl. Med. Mol. Imaging, 2004, 4, 289-296.
[26]
Huang, C.Y.; Guatelli, S.; Oborn, B.; Allen, B. SU-E-J-03: A Comprehensive Comparison Between Alpha and Beta Emitters for Cancer Radioimmunotherapy. Med. Phys., 2014, 41(6), 154-155.
[27]
Larson, S.M.; Carrasquillo, J.A.; Cheung, N-K.V.; Press, O.W. Radioimmunotherapy of human tumours. Nat. Rev. Cancer, 2015, 347.
[28]
Al-Tarakji, M.; Feilchenfeldt, J.; Haidar, A.; Szabados, L.; Abdelaziem, S.; Sayed, A.; Toro, A.; Di Carlo, I. Rare occurrence of metastasis from lung cancer to the anus: case report and review of the literature. World J. Surg. Oncol., 2016, 14(1), 157.
[29]
Soliman, D.S.; Fareed, S.; Alkuwari, E.; El-Omri, H.; Al-Sabbagh, A.; Gameel, A.; Yassin, M. Concomitant Classic Hodgkin Lymphoma of Lymph Node and cMYC-Positive Burkitt Leukemia/Lymphoma of the Bone Marrow Presented Concurrently at the Time of Presentation: A Rare Combination of Discordant Lymphomas. Clin. Med. Insights Blood Disord., 2016, 23-28.
[30]
Zahid, R.; Soofi, M.E.; Elmalik, H.; Junejo, K. Primary apocrine carcinoma of the axilla in a male patient: A case report. Clin. Case Rep., 2016, 4, 344-347.
[31]
Kosuda, S. Report on the Current Nuclear Medicine Status of the
Asian Member States from the Initial Cooperative Project Meeting
(RAS6061/9001/01) of International Atomic Energy Agency/
Regional Cooperative Agreement. Austral-Asian J. Cancer, 2013, 3, 125-128.
[32]
Chen, Y.; Chen, R.; Zhou, X.; Liu, J.; Huang, G. Report on the development and application of PET/CT in mainland China. Oncotarget, 2017, 38, 64417-64426.
[33]
Papash, A.I.; Alenitsky, Y.G. Commercial cyclotrons. Part I: Commercial cyclotrons in the energy range 10-30 MeV for isotope production. Phys. Part. Nucl., 2008, 597-537.
[35]
Saha, G.B.; MacIntyre, W.J.; Go, R.T. Cyclotrons and positron emission tomography radiopharmaceuticals for clinical imaging. Semin. Nucl. Med., 1992, 3, 150-161.
[36]
Schmor, P. Review of Cyclotrons for the Production of Radioactive Isotopes for Medical and Industrial Applications. Rev. Accelerator Sci. Technol., 2011, 1, 103-116.
[37]
Fowler, J.S.; Ido, T. Initial and subsequent approach for the synthesis of 18FDG. Semin. Nucl. Med., 2002, 1, 6-12.
[38]
Yu, S. Review of (18)F-FDG Synthesis and Quality Control. Biomed. Imaging Interv. J., 2006, 4e57
[39]
Knapp, Jr, F.F.; Mirzadeh, S.; Beets, A.L.; Du, M. Production of
therapeutic radioisotopes in the ORNL High Flux Isotope Reactor
(HFIR), for applications in nuclear medicine, oncology and
interventional cardiology, ed.1;. 2005.
[40]
Ehrhardt, G.J.; Ketring, A.R.; Ayers, L.M. Reactor-produced radionuclides at the University of Missouri Research Reactor. Appl. Radiat. Isot., 1998, 4, 295-297.
[41]
Pavshuk, V.; Chuvilin, D. Production of radionuclides - Fission, fragments of nuclear fuel, ed.1. 2005.
[42]
National Research Council. Medical isotope production without highly enriched uranium, ed 1; National Academies Press, 2009.
[43]
Chinol, M.; Cutler, C.S.; Papi, S.; Ketring, A.; Garaboldi, L.; Paganelli, G.; Murray, L. Production of GMP-compliant lutetium-177: radiochemical precursor for targeted cancer therapy. Nucl. Med. Biol., 2010, 6, 717.
[44]
Islami-Rad, S.Z.; Shamsaei, M.; Gholipour-Peyvandi, R.; Ghannadi-Maragheh, M. Reactor production and purification of 153Sm radioisotope via natSm target irradiation. Radiochemistry, 2011, 6, 642-643.
[45]
Banerjee, S.; Ambikalmajan Pillai, M.R.; Ramamoorthy, N. Evolution of Tc-99m in diagnostic radiopharmaceuticals. Semin. Nucl. Med., 2001, 4, 260-277.
[46]
Boschi, A.; Martini, P.; Pasquali, M.; Uccelli, L. Recent achievements in Tc-99m radiopharmaceutical direct production by medical cyclotrons. Drug Dev. Ind. Pharm., 2017, 9, 1402-1412.
[47]
Arino, H.; Thornton, A.; Kramer, H.; Mc, G.J. Production of high purity fission product molybdenum-99., 1971.
[48]
Aliludin, Z.; Mutalib, A.; Sukmana, A. Kadarisman; Gunawan, A.H.; Vandegrift, G.F.; Wu, D.; Srinivasan, B.; Snelgrove, J. Processing of LEU targets for sup 99Mo production -- Demonstration of a modified Cintichem process. Proceedings of the International Meeting on Reduced Enrichment for Research and Test Reactors, Paris France1995.
[49]
Lee, S-K.; Beyer, G.J.; Lee, J.S. Development of Industrial-Scale Fission 99Mo Production Process Using Low Enriched Uranium Target. Nucl. Eng. Technol., 2016, 3, 613-623.
[50]
Sameh, A.; Ache, H.J. Production techniques for fission molybdenum-99. Radiochim. Acta, 1987, 41, 65-72.
[51]
Kotschkov, Y.; Pozdeyev, V.V.; Krascheninnikov, A.I.; Zakharov, N.V. Production of fission 99Mo with closed uranium cycle at the nuclear reactor WWR-Ts. Radiokhimiya, 2012, 54(2), 188-192.
[52]
Stang, Jr, L.G. Manual of isotope production processes in use at Brookhaven National Laboratory, ed 1; Brookhaven National Laboratory: Upton, New York, 1964.
[53]
Brown, L.C. Methods and apparatus for selective gaseous
extraction of molybdenum-99 and other fission product
radioisotopes. EP2580763A2 2015.
[54]
Pillai, M.R.A.; Dash, A.; Knapp, F.F. Sustained Availability of 99mTc: Possible Paths Forward. J. Nucl. Med., 2013, 2, 313-323.
[55]
Ruth, T.J. The Medical Isotope Crisis: How We Got Here and Where We Are Going. J. Nucl. Med. Technol., 2014, 4, 245-248.
[57]
Doherty, J.; Graham, D. The Radiopharmacy.In: Practical Nuclear Medicine; Springer London: London, 2005, pp. 113-141.
[58]
International Organization for Standardization. Cleanrooms and associated controlled environments. (ISO 14644-1); ISO, 2015.
[59]
Owunwanne, A.; Patel, M.; Sadek, S. Design of a radiopharmacy,
in: The 22 Handbook of Radiopharmaceuticals, ed.1; Springer
Boston, MA. 1995.
[61]
Campos, F.E.d.; Perini, E.A.; Júnior, C.L.Z.; Aparecido, W.; Calvo, P.; Starovoitova, V.N. Main Steps for Radiopharmaceuticals Hot
Cells Validation in Accordance with GMP Requirements:
Methodology and Practical Guid. J. Environ. Sci. Eng. A, 2018, 3
[63]
Elsinga, P.; Todde, S. Fau - Penuelas, I.; Penuelas I Fau - Meyer, G.; Meyer G Fau - Farstad, B.; Farstad B Fau - Faivre-Chauvet, A.; Faivre-Chauvet A Fau - Mikolajczak, R.; Mikolajczak R Fau - Westera, G.; Westera G Fau - Gmeiner-Stopar, T.; Gmeiner-Stopar T Fau - Decristoforo, C.; Decristoforo, C. Guidance on current good radiopharmacy practice (cGRPP) for the small-scale preparation of radiopharmaceuticals. Eur. J. Nucl. Med. Mol. Imaging, 2010, 4, 1049-1062.
[64]
Gnanasegaran, G.; Ballinger, J.R. Molecular imaging agents for
SPECT (and SPECT/CT). Eur. J. Nucl. Med. Mol. Imaging, 2014, 1, 013-2643.
[65]
Sharp, S.E.; Trout, A.T.; Weiss, B.D.; Gelfand, M.J. MIBG in neuroblastoma diagnostic imaging and therapy. Radiographics, 2016, 1, 258-278.
[66]
Spanu, A.; Solinas, M.E.; Chessa, F.; Sanna, D.; Nuvoli, S.; Madeddu, G. 131I SPECT/CT in the follow-up of differentiated thyroid carcinoma: incremental value versus planar imaging. J. Nucl. Med., 2009, 2, 184-190.
[67]
Chen, J.J.; LaFrance, N.D.; Allo, M.D.; Cooper, D.S.; Ladenson, P.W. Single photon emission computed tomography of the thyroid. J. Clin. Endocrinol. Metab., 1988, 6, 1240-1246.
[68]
Pandit-Taskar, N.; Batraki, M.; Divgi, C.R. Radiopharmaceutical therapy for palliation of bone pain from osseous metastases. J. Nucl. Med., 2004, 8, 1358-1365.
[69]
Inai, R.; Shinya, T.; Tada, A.; Sato, S.; Fujiwara, T.; Takeda, K.; Kunisada, T.; Yanai, H.; Ozaki, T.; Kanazawa, S. Diagnostic value of Thallium-201 scintigraphy in differentiating malignant bone tumors from benign bone lesions. Ann. Nucl. Med., 2015, 8, 674-681.
[70]
Ficaro, E.P.; Corbett, J.R. Advances in quantitative perfusion SPECT imaging. J. Nucl. Cardiol., 2004, 1, 62-70.
[71]
Bekerman, C.; Hoffer, P.B.; Bitran, J.D.; Gupta, R.G. Gallium-67 citrate imaging studies of the lung. Semin. Nucl. Med., 1980, 3, 286-301.
[72]
Eberlein, U.; Cremonesi, M.; Lassmann, M. Individualized Dosimetry for Theranostics: Necessary, Nice to Have, or Counterproductive? J. Nucl. Med., 2017(Suppl. 2), 97S-103S.
[73]
MacKay, J.A.; Li, Z. Theranostic agents that co-deliver therapeutic and imaging agents? Adv. Drug Deliv. Rev., 2010, 11, 1003-1004.
[74]
Ahn, B-C. Personalized Medicine Based on Theranostic Radioiodine Molecular Imaging for Differentiated Thyroid Cancer, ed 1; , 2016.
[75]
Müller, C.; Domnanich, K.A.; Umbricht, C.A.; van der Meulen, N.P Scandium and terbium radionuclides for radiotheranostics:
Current state of development towards clinical application. Br. J.
Radiol, , 20180074.
[76]
Rosch, F.; Herzog, H.; Qaim, S.M. The beginning and development of the theranostic approach in nuclear medicine, as exemplified by the radionuclide pair (86)Y and (90)Y. Pharmaceuticals (Basel), 2017, 10(2)pii E56
[77]
Abram, U.; Alberto, R. Technetium and rhenium: Coordination
chemistry and nuclear medical applications. J. Br. Chem. Soc, 2006.1486-1500
[78]
Hjelstuen, O.K. Technetium-99m chelators in nuclear medicine. A review. Analyst, 1995, 3, 863-866.
[79]
Rösch, F.; Knapp, F.F. Radionuclide Generators.Handbook of Nuclear Chemistry; Springer US: Boston, MA, 2011, pp. 1935-1976.
[80]
Chatal, J.F.; Rouzet, F.; Haddad, F.; Bourdeau, C.; Mathieu, C.; Le Guludec, D. Story of Rubidium-82 and Advantages for Myocardial Perfusion PET Imaging. Front. Med., 2015, 65.
[81]
Rösch, F. 68Ge/68Ga Generators: Past, Present, and Future, Berlin, Heidelberg. 2013, 3, 16.
[82]
Padhy, A.K.; Dondi, M. Thematic planning: The role of the international atomic energy agency in promoting education, medical research, and technology transfer among nuclear medicine communities of developing countries. Semin. Nucl. Med., 2008, 2, S2-S4.