Generic placeholder image

Current Computer-Aided Drug Design

Editor-in-Chief

ISSN (Print): 1573-4099
ISSN (Online): 1875-6697

Review Article

The Monte Carlo Method as a Tool to Build up Predictive QSPR/QSAR

Author(s): Andrey A. Toropov* and Alla P. Toropova

Volume 16, Issue 3, 2020

Page: [197 - 206] Pages: 10

DOI: 10.2174/1573409915666190328123112

Price: $65

Abstract

Background: The Monte Carlo method has a wide application in various scientific researches. For the development of predictive models in a form of the quantitative structure-property / activity relationships (QSPRs/QSARs), the Monte Carlo approach also can be useful. The CORAL software provides the Monte Carlo calculations aimed to build up QSPR/QSAR models for different endpoints.

Methods: Molecular descriptors are a mathematical function of so-called correlation weights of various molecular features. The numerical values of the correlation weights give the maximal value of a target function. The target function leads to a correlation between endpoint and optimal descriptor for the visible training set. The predictive potential of the model is estimated with the validation set, i.e. compounds that are not involved in the process of building up the model.

Results: The approach gave quite good models for a large number of various physicochemical, biochemical, ecological, and medicinal endpoints. Bibliography and basic statistical characteristics of several CORAL models are collected in the present review. In addition, the extended version of the approach for more complex systems (nanomaterials and peptides), where behaviour of systems is defined by a group of conditions besides the molecular structure is demonstrated.

Conclusion: The Monte Carlo technique available via the CORAL software can be a useful and convenient tool for the QSPR/QSAR analysis.

Keywords: QSPR/QSAR, monte carlo method, CORAL software, index of ideality of correlation, optimal descriptors, physicochemical.

Next »
Graphical Abstract

[1]
Amic, D.; Beslo, D.; Lucic, B.; Nikolic, S.; Trinajstic, N. The Vertex-Connectivity Index Revisited. J. Chem. Inf. Comput. Sci., 1998, 38, 819-822.
[http://dx.doi.org/10.1021/ci980039b]
[2]
Randic, M.; Basak, S.C. Optimal Molecular Descriptors Based on Weighted Path Numbers. J. Chem. Inf. Comput. Sci., 1999, 39, 261-266.
[http://dx.doi.org/10.1021/ci9800763]
[3]
Randić, M.; Pompe, M. The variable connectivity index 1chi(f) versus the traditional molecular descriptors: a comparative study of 1chi(f) against descriptors of CODESSA. J. Chem. Inf. Comput. Sci., 2001, 41(3), 631-638.
[http://dx.doi.org/10.1021/ci000119r] [PMID: 11410040]
[4]
Randić, M.; Basak, S.C. A new descriptor for structure-property and structure-activity correlations. J. Chem. Inf. Comput. Sci., 2001, 41(3), 650-656.
[http://dx.doi.org/10.1021/ci000116e] [PMID: 11410042]
[5]
Toropov, A.A.; Toropova, A.P.; Benfenati, E.; Gini, G. OCWLGI descriptors: theory and praxis. Curr Comput Aided Drug Des, 2013, 9(2), 226-232.
[http://dx.doi.org/10.2174/1573409911309020007] [PMID: 23700994]
[6]
Worachartcheewan, A.; Toropova, A.P.; Toropov, A.A.; Siriwong, S.; Prapojanasomboon, J.; Prachayasittikul, V.; Nantasenamat, C. Quantitative structure-activity relationship study of betulinic acid derivatives against HIV using SMILES-based descriptors. Curr Comput Aided Drug Des, 2018, 14(2), 152-159.
[http://dx.doi.org/10.2174/1573409914666180112094156] [PMID: 29332601]
[7]
Masand, V.H.; Toropov, A.A.; Toropova, A.P.; Mahajan, D.T. QSAR models for anti-malarial activity of 4-aminoquinolines. Curr Comput Aided Drug Des, 2014, 10(1), 75-82.
[http://dx.doi.org/10.2174/1573409910666140303114621] [PMID: 24801104]
[8]
Veselinović, A.M.; Veselinović, J.B.; Toropov, A.A.; Toropova, A.P.; Nikolić, G.M. QSAR models for the reactivation of sarin inhibited acetylcholinesterase by quaternary pyridinium oximes based on Monte Carlo method. Curr Comput Aided Drug Des, 2014, 10(3), 266-273.
[http://dx.doi.org/10.2174/1574886309666141126144848] [PMID: 25756672]
[9]
Vracko, M.; Witzmann, F.A.; Basak, S.C. A possible chemo-biodescriptor framework for the prediction of toxicity of nanosubstances: An integrated computational approach. Curr Comput Aided Drug Des, 2018, 14(1), 2-4.
[http://dx.doi.org/10.2174/157340991401180321111721] [PMID: 29624157]
[10]
Harsa, A.M.; Harsa, T.E.; Diudea, M.V.; Janezic, D. Molecular docking studies of flavonoids derivatives on the flavonoid 3-O-Glucosyltransferase. Curr Comput Aided Drug Des, 2015, 11(4), 353-360.
[http://dx.doi.org/10.2174/1874609809666151223093040] [PMID: 26694106]
[11]
Harsa, A.M.; Harsa, T.E.; Bolboacǎ, S.D.; Diudea, M.V. QSAR in flavonoids by similarity cluster prediction. Curr Comput Aided Drug Des, 2014, 10(2), 115-128.
[http://dx.doi.org/10.2174/1573409910666140410104542] [PMID: 24724899]
[12]
Bhattacharjee, A.K. In silico stereo-electronic analysis of PMD (p-Menthane-3-8-Diol) and its derivatives for pharmacophore development may aid discovery of novel insect repellents. Curr Comput Aided Drug Des, 2013, 9(3), 308-316.
[http://dx.doi.org/10.2174/15734099113099990021] [PMID: 24010930]
[13]
Ruiz, I.L.; García, G.C.; Gómez-Nieto, M.Á. Structural similarity and descriptor spaces for clustering and development of QSAR models. Curr Comput Aided Drug Des, 2013, 9(2), 254-271.
[http://dx.doi.org/10.2174/1573409911309020010] [PMID: 23700995]
[14]
Bolboacă, S.D.; Jäntschi, L.; Diudea, M.V. Molecular design and QSARs/QSPRs with molecular descriptors family. Curr Comput Aided Drug Des, 2013, 9(2), 195-205.
[http://dx.doi.org/10.2174/1573409911309020005] [PMID: 23700993]
[15]
Gupta, P.; Sharma, A.; Garg, P.; Roy, N. QSAR study of curcumine derivatives as HIV-1 integrase inhibitors. Curr Comput Aided Drug Des, 2013, 9(1), 141-150.
[http://dx.doi.org/10.2174/1573409911309010013] [PMID: 23286784]
[16]
Srivastava, H.K.; Bohari, M.H.; Sastry, G.N. Modeling anti-HIV compounds: the role of analogue-based approaches. Curr Comput Aided Drug Des, 2012, 8(3), 224-248.
[http://dx.doi.org/10.2174/157340912801619085] [PMID: 22734706]
[17]
Restrepo, G.; Basak, S.C.; Mills, D. Comparison of QSARs and characterization of structural basis of bioactivity using partial order theory and formal concept analysis: a case study with mutagenicity. Curr Comput Aided Drug Des, 2011, 7(2), 109-121.
[http://dx.doi.org/10.2174/157340911795677639] [PMID: 21542792]
[18]
Agrawal, V.K.; Singh, J.; Louis, B.; Joshi, S.; Joshi, A.; Khadikar, P.V. The topology of molecule and its lipophilicity. Curr. Comput. Aided Drug Des., 2006, 2(4), 369-403.
[http://dx.doi.org/10.2174/157340906778992364]
[19]
Wang, Y.; Zhou, Q.; Wang, L.; Ma, J-J. QSAR analysis of 6-Fluoro-3-(4H-1,2,4-triazol-3-yl)quinolin-4(1H)-ones as antileukemic agents using physicochemical and alignment independent topological based descriptors. Lett. Org. Chem., 2018, 15(7), 551-558.
[http://dx.doi.org/10.2174/1570178614666170804164146]
[20]
Kumar, A.; Srivastava, G.; Sharma, A. A physicochemical descriptor based method for effective and rapid screening of dual inhibitors against BACE-1 and GSK-3β as targets for Alzheimer’s disease. Comput. Biol. Chem., 2017, 71, 1-9.
[http://dx.doi.org/10.1016/j.compbiolchem.2017.09.001] [PMID: 28950235]
[21]
Ritchie, T.J.; Macdonald, S.J.F. Physicochemical descriptors of aromatic character and their use in drug discovery. J. Med. Chem., 2014, 57(17), 7206-7215.
[http://dx.doi.org/10.1021/jm500515d] [PMID: 24856517]
[22]
Gabler, S.; Soelter, J.; Hussain, T.; Sachse, S.; Schmuker, M. Physicochemical vs. vibrational descriptors for prediction of odor receptor responses. Mol. Inform., 2013, 32(9-10), 855-865.
[http://dx.doi.org/10.1002/minf.201300037] [PMID: 27480237]
[23]
Veselinović, A.M.; Milosavljević, J.B.; Toropov, A.A.; Nikolić, G.M. SMILES-based QSAR model for arylpiperazines as high-affinity 5-HT(1A) receptor ligands using CORAL. Eur. J. Pharm. Sci., 2013, 48(3), 532-541.
[http://dx.doi.org/10.1016/j.ejps.2012.12.021] [PMID: 23287365]
[24]
Worachartcheewan, A.; Mandi, P.; Prachayasittikul, V.; Toropova, A.P.; Toropov, A.A.; Nantasenamat, C. Large-scale QSAR study of aromatase inhibitors using SMILES-based descriptors. Chemom. Intell. Lab. Syst., 2014, 138, 120-126.
[http://dx.doi.org/10.1016/j.chemolab.2014.07.017]
[25]
Veselinović, A.M.; Milosavljević, J.B.; Toropov, A.A.; Nikolić, G.M. SMILES-based QSAR models for the calcium channel-antagonistic effect of 1,4-dihydropyridines. Arch. Pharm. (Weinheim), 2013, 346(2), 134-139.
[http://dx.doi.org/10.1002/ardp.201200373] [PMID: 23280520]
[26]
Veselinović, A.M.; Veselinović, J.B.; Živković, J.V.; Nikolić, G.M. Application of smiles notation based optimal descriptors in drug discovery and design. Curr. Top. Med. Chem., 2015, 15(18), 1768-1779.
[http://dx.doi.org/10.2174/1568026615666150506151533] [PMID: 25961525]
[27]
Li, Q.; Ding, X.; Si, H.; Gao, H. QSAR model based on SMILES of inhibitory rate of 2, 3-diarylpropenoic acids on AKR1C3. Chemom. Intell. Lab. Syst., 2014, 139, 132-138.
[http://dx.doi.org/10.1016/j.chemolab.2014.09.013]
[28]
Toropov, A.A.; Toropova, A.P.; Benfenati, E.; Gini, G.; Leszczynska, D.; Leszczynski, J. CORAL: QSPR model of water solubility based on local and global SMILES attributes. Chemosphere, 2013, 90(2), 877-880.
[http://dx.doi.org/10.1016/j.chemosphere.2012.07.035] [PMID: 22921649]
[29]
Nesměrák, K.; Toropov, A.A.; Toropova, A.P.; Kohoutova, P.; Waisser, K. SMILES-based quantitative structure-property relationships for half-wave potential of N-benzylsalicylthioamides. Eur. J. Med. Chem., 2013, 67, 111-114.
[http://dx.doi.org/10.1016/j.ejmech.2013.05.031] [PMID: 23850571]
[30]
Nesměrák, K.; Toropov, A.A.; Toropova, A.P. SMILES-based quantitative structure-retention relationships for RP HPLC of 1-phenyl-5-benzylsulfanyltetrazoles. Struct. Chem., 2014, 25(1), 311-317.
[http://dx.doi.org/10.1007/s11224-013-0293-2]
[31]
Worachartcheewan, A.; Prachayasittikul, V.; Toropova, A.P.; Toropov, A.A.; Nantasenamat, C. Large-scale structure-activity relationship study of hepatitis C virus NS5B polymerase inhibition using SMILES-based descriptors. Mol. Divers., 2015, 19(4), 955-964.
[http://dx.doi.org/10.1007/s11030-015-9614-2] [PMID: 26164590]
[32]
Toropov, A.A.; Nesměrák, K. SMILES-based QSPR model for half-wave potentials of 1-phenyl-5-benzyl- sulfanyltetrazoles using CORAL. Chem. Phys. Lett., 2012, 539-540, 204-208.
[http://dx.doi.org/10.1016/j.cplett.2012.04.061]
[33]
Toropov, A.A.; Toropova, A.P.; Lombardo, A.; Roncaglioni, A.; De Brita, N.; Stella, G.; Benfenati, E. CORAL: The prediction of biodegradation of organic compounds with optimal SMILES-based descriptors. Cent. Eur. J. Chem., 2012, 10(4), 1042-1048.
[34]
Prachayasittikul, V.; Worachartcheewan, A.; Toropova, A.P.; Toropov, A.A.; Schaduangrat, N.; Prachayasittikul, V.; Nantasenamat, C. Large-scale classification of P-glycoprotein inhibitors using SMILES-based descriptors. SAR QSAR Environ. Res., 2017, 28(1), 1-16.
[http://dx.doi.org/10.1080/1062936X.2016.1264468] [PMID: 28056566]
[35]
Toropov, A.A.; Toropova, A.P.; Benfenati, E.; Manganaro, A. QSPR modeling of enthalpies of formation for organometallic compounds by SMART-based optimal descriptors. J. Comput. Chem., 2009, 30(15), 2576-2582.
[http://dx.doi.org/10.1002/jcc.21263] [PMID: 19373829]
[36]
Toropov, A.A.; Toropova, A.P.; Benfenati, E.; Leszczynska, D.; Leszczynski, J. InChI-based optimal descriptors: QSAR analysis of fullerene[C60]-based HIV-1 PR inhibitors by correlation balance. Eur. J. Med. Chem., 2010, 45(4), 1387-1394.
[http://dx.doi.org/10.1016/j.ejmech.2009.12.037] [PMID: 20116899]
[37]
Toropov, A.A.; Toropova, A.P.; Benfenati, E. QSAR-modeling of toxicity of organometallic compounds by means of the balance of correlations for InChI-based optimal descriptors. Mol. Divers., 2010, 14(1), 183-192.
[http://dx.doi.org/10.1007/s11030-009-9156-6] [PMID: 19452257]
[38]
Toropov, A.A.; Toropova, A.P.; Benfenati, E.; Leszczynska, D.; Leszczynski, J. Additive InChI-based optimal descriptors: QSPR modeling of fullerene C60 solubility in organic solvents. J. Math. Chem., 2009, 46(4), 1232-1251.
[http://dx.doi.org/10.1007/s10910-008-9514-0]
[39]
Toropov, A.A.; Toropova, A.P.; Benfenati, E. QSPR modeling of octanol water partition coefficient of platinum complexes by InChI-based optimal descriptors. J. Math. Chem., 2009, 46(4), 1060-1073.
[http://dx.doi.org/10.1007/s10910-008-9491-3]
[40]
Toropova, A.P.; Toropov, A.A. Hybrid optimal descriptors as a tool to predict skin sensitization in accordance to OECD principles. Toxicol. Lett., 2017, 275, 57-66.
[http://dx.doi.org/10.1016/j.toxlet.2017.03.023] [PMID: 28359801]
[41]
Ahmadi, S. Mathematical modeling of cytotoxicity of metal oxide nanoparticles using the index of ideality correlation criteria. Chemosphere, 2020, 242125192
[http://dx.doi.org/10.1016/j.chemosphere.2019.125192] [PMID: 31677509]
[42]
Toropova, A.P.; Toropov, A.A.; Benfenati, E.; Leszczynska, D.; Leszczynski, J. Prediction of antimicrobial activity of large pool of peptides using quasi-SMILES. Biosystems, 2018, 169-170, 5-12.
[http://dx.doi.org/10.1016/j.biosystems.2018.05.003] [PMID: 29800627]
[43]
Trinh, T.X.; Choi, J-S.; Jeon, H.; Byun, H-G.; Yoon, T-H.; Kim, J. Quasi-SMILES-Based Nano-Quantitative Structure-Activity Relationship Model to Predict the Cytotoxicity of Multiwalled Carbon Nanotubes to Human Lung Cells. Chem. Res. Toxicol., 2018, 31(3), 183-190.
[http://dx.doi.org/10.1021/acs.chemrestox.7b00303] [PMID: 29439565]
[44]
Choi, J-S.; Trinh, T.X.; Yoon, T-H.; Kim, J.; Byun, H-G. Quasi-QSAR for predicting the cell viability of human lung and skin cells exposed to different metal oxide nanomaterials. Chemosphere, 2019, 217, 243-249.
[http://dx.doi.org/10.1016/j.chemosphere.2018.11.014] [PMID: 30419378]
[45]
Toropova, A.P.; Toropov, A.A. QSPR and nano-QSPR: What is the difference? J. Mol. Struct., 2019, 1182, 141-149.
[http://dx.doi.org/10.1016/j.molstruc.2019.01.040]
[46]
Ahmadi, S.; Akbari, A. Prediction of the adsorption coefficients of some aromatic compounds on multi-wall carbon nanotubes by the Monte Carlo method. SAR QSAR Environ. Res., 2018, 29(11), 895-909.
[http://dx.doi.org/10.1080/1062936X.2018.1526821] [PMID: 30332923]
[47]
Ahmadi, S.; Mardinia, F.; Azimi, N.; Qomi, M.; Balali, E. Prediction of chalcone derivative cytotoxicity activity against MCF-7 human breast cancer cell by Monte Carlo method. J. Mol. Struct., 2019, 1181, 305-311.
[http://dx.doi.org/10.1016/j.molstruc.2018.12.089]
[48]
Golubović, M.; Lazarević, M.; Zlatanović, D.; Krtinić, D.; Stoičkov, V.; Mladenović, B.; Milić, D.J.; Sokolović, D.; Veselinović, A.M. The anesthetic action of some polyhalogenated ethers-Monte Carlo method based QSAR study. Comput. Biol. Chem., 2018, 75, 32-38.
[http://dx.doi.org/10.1016/j.compbiolchem.2018.04.009] [PMID: 29734080]
[49]
Kumar, P.; Kumar, A. Monte Carlo Method Based QSAR Studies of Mer Kinase Inhibitors in Compliance with OECD Principles. Drug Res. (Stuttg.), 2018, 68(4), 189-195.
[http://dx.doi.org/10.1055/s-0043-119288] [PMID: 28992659]
[50]
Veselinović, J.B.; Ðordevic, V.; Bogdanovic, M.; Moric, I.; Veselinovic, A.M. QSAR modeling of dihydrofolate reductase inhibitors as a therapeutic target for multiresistant bacteria. Struct. Chem., 2018, 29(2), 541-551.
[http://dx.doi.org/10.1007/s11224-017-1051-7]
[51]
Kumar, A.; Chauhan, S. QSAR Differential Model for Prediction of SIRT1 Modulation using Monte Carlo Method. Drug Res. (Stuttg.), 2017, 67(3), 156-162.
[PMID: 27992935]
[52]
Veselinović, A.M.; Toropov, A.; Toropova, A.; Stanković-Dordević, D.; Veselinović, J.B. Design and development of novel antibiotics based on FtsZ inhibition-: In silico studies. New J. Chem., 2018, 42(13), 10976-10982.
[http://dx.doi.org/10.1039/C8NJ01034J]
[53]
Toropova, A.P.; Toropov, A.A.; Benfenati, E.; Castiglioni, S.; Bagnati, R.; Passoni, A.; Zuccato, E.; Fanelli, R. Quasi-SMILES as a tool to predict removal rates of pharmaceuticals and dyes in sewage. Process Saf. Environ., 2018, 118, 227-233.
[http://dx.doi.org/10.1016/j.psep.2018.07.003]
[54]
Toropov, A.A.; Toropova, A.P.; Benfenati, E.; Dorne, J.L. SAR for gastro-intestinal absorption and blood-brain barrier permeation of pesticides. Chem. Biol. Interact., 2018, 290, 1-5.
[http://dx.doi.org/10.1016/j.cbi.2018.04.030] [PMID: 29753609]
[55]
Zdravković, M.; Antović, A.; Veselinović, J.B.; Sokolović, D.; Veselinović, A.M. QSPR in forensic analysis - The prediction of retention time of pesticide residues based on the Monte Carlo method. Talanta, 2018, 178, 656-662.
[http://dx.doi.org/10.1016/j.talanta.2017.09.064] [PMID: 29136877]
[56]
Toropova, A.P.; Toropov, A.A.; Marzo, M.; Escher, S.E.; Dorne, J.L.; Georgiadis, N.; Benfenati, E. The application of new HARD-descriptor available from the CORAL software to building up NOAEL models. Food Chem. Toxicol., 2018, 112, 544-550.
[http://dx.doi.org/10.1016/j.fct.2017.03.060] [PMID: 28366846]
[57]
Toropov, A.A.; Raška, I., Jr; Toropova, A.P.; Raškova, M.; Veselinović, A.M.; Veselinović, J.B. The study of the index of ideality of correlation as a new criterion of predictive potential of QSPR/QSAR-models. Sci. Total Environ., 2019, 659, 1387-1394.
[http://dx.doi.org/10.1016/j.scitotenv.2018.12.439] [PMID: 31096349]
[58]
Toropova, A.P.; Toropov, A.A. Does the Index of Ideality of Correlation Detect the Better Model Correctly?Mol. Inf; , 2019, 38, p. 1800157.
[http://dx.doi.org/10.1002/minf.201800157]
[59]
Balaban, A.T.; Basak, S.C.; Beteringhe, A.; Mills, D.; Supuran, C.T. QSAR study using topological indices for inhibition of carbonic anhydrase II by sulfanilamides and Schiff bases. Mol. Divers., 2004, 8(4), 401-412.
[http://dx.doi.org/10.1023/B:MODI.0000047516.97952.f4] [PMID: 15612644]
[60]
Valkova, I.; Vračko, M.; Basak, S.C. Modeling of structure-mutagenicity relationships: Counter propagation neural network approach using calculated structural descriptors. Anal. Chim. Acta, 2004, 509(2), 179-186.
[http://dx.doi.org/10.1016/j.aca.2003.12.035]
[61]
Kumar, M.; Thurow, K.; Stoll, N.; Stoll, R. Robust fuzzy mappings for QSAR studies. Eur. J. Med. Chem., 2007, 42(5), 675-685.
[http://dx.doi.org/10.1016/j.ejmech.2006.12.017] [PMID: 17316911]
[62]
Toropov, A.A.; Rasulev, B.F.; Leszczynski, J. QSAR modeling of acute toxicity by balance of correlations. Bioorg. Med. Chem., 2008, 16(11), 5999-6008.
[http://dx.doi.org/10.1016/j.bmc.2008.04.055] [PMID: 18482841]
[63]
Toropova, A.P.; Toropov, A.A.; Benfenati, E.; Gini, G.; Leszczynska, D.; Leszczynski, J. CORAL: quantitative structure-activity relationship models for estimating toxicity of organic compounds in rats. J. Comput. Chem., 2011, 32(12), 2727-2733.
[http://dx.doi.org/10.1002/jcc.21848] [PMID: 21656789]
[64]
Toropova, A.P.; Toropov, A.A.; Martyanov, S.E.; Benfenati, E.; Gini, G.; Leszczynska, D.; Leszczynski, J. CORAL: QSAR modeling of toxicity of organic chemicals towards Daphnia magna. Chemom. Intell. Lab. Syst., 2012, 110(1), 177-181.
[http://dx.doi.org/10.1016/j.chemolab.2011.10.005]
[65]
Gobbi, M.; Beeg, M.; Toropova, M.A.; Toropov, A.A.; Salmona, M. Monte Carlo method for predicting of cardiac toxicity: hERG blocker compounds. Toxicol. Lett., 2016, 250-251, 42-46.
[http://dx.doi.org/10.1016/j.toxlet.2016.04.010] [PMID: 27067105]
[66]
Toropov, A.A.; Toropova, A.P.; Marzo, M.; Dorne, J.L.; Georgiadis, N.; Benfenati, E. QSAR models for predicting acute toxicity of pesticides in rainbow trout using the CORAL software and EFSA’s OpenFoodTox database. Environ. Toxicol. Pharmacol., 2017, 53, 158-163.
[http://dx.doi.org/10.1016/j.etap.2017.05.011] [PMID: 28599185]
[67]
Toropova, A.P.; Schultz, T.W.; Toropov, A.A. Building up a QSAR model for toxicity toward Tetrahymena pyriformis by the Monte Carlo method: A case of benzene derivatives. Environ. Toxicol. Pharmacol., 2016, 42, 135-145.
[http://dx.doi.org/10.1016/j.etap.2016.01.010] [PMID: 26851376]
[68]
Toropova, A.P.; Toropov, A.A.; Rašková, M.; Raška, I. Improved building up a model of toxicity towards Pimephales promelas by the Monte Carlo method. Environ. Toxicol. Pharmacol., 2016, 48, 278-285.
[http://dx.doi.org/10.1016/j.etap.2016.11.010] [PMID: 27863338]
[69]
Gissi, A.; Toropov, A.A.; Toropova, A.P.; Nicolotti, O.; Carotti, A.; Benfenati, E. Building up QSAR model for toxicity of psychotropic drugs by the Monte Carlo method. Struct. Chem., 2014, 25(4), 1067-1073.
[http://dx.doi.org/10.1007/s11224-013-0380-4]
[70]
Toropova, A.P.; Toropov, A.A.; Veselinović, J.B.; Veselinović, A.M. QSAR as a random event: a case of NOAEL. Environ. Sci. Pollut. Res. Int., 2015, 22(11), 8264-8271.
[http://dx.doi.org/10.1007/s11356-014-3977-2] [PMID: 25520208]
[71]
Rescifina, A.; Floresta, G.; Marrazzo, A.; Parenti, C.; Prezzavento, O.; Nastasi, G.; Dichiara, M.; Amata, E. Sigma-2 receptor ligands QSAR model dataset. Data Brief, 2017, 13, 514-535.
[http://dx.doi.org/10.1016/j.dib.2017.06.022] [PMID: 28702490]
[72]
Islam, M.A.; Pillay, T.S. Simplified molecular input line entry system-based descriptors in QSAR modeling for HIV-protease inhibitors. Chemom. Intell. Lab. Syst., 2016, 153, 67-74.
[http://dx.doi.org/10.1016/j.chemolab.2016.02.008]
[73]
Amata, E.; Marrazzo, A.; Dichiara, M.; Modica, M.N.; Salerno, L.; Prezzavento, O.; Nastasi, G.; Rescifina, A.; Romeo, G.; Pittalà, V. Heme Oxygenase Database (HemeOxDB) and QSAR Analysis of Isoform 1 Inhibitors. ChemMedChem, 2017, 12(22), 1873-1881.
[http://dx.doi.org/10.1002/cmdc.201700321] [PMID: 28708269]
[74]
Amata, E.; Marrazzo, A.; Dichiara, M.; Modica, M.N.; Salerno, L.; Prezzavento, O.; Nastasi, G.; Rescifina, A.; Romeo, G.; Pittalà, V. Comprehensive data on a 2D-QSAR model for Heme Oxygenase isoform 1 inhibitors. Data Brief, 2017, 15, 281-299.
[http://dx.doi.org/10.1016/j.dib.2017.09.036] [PMID: 29034293]
[75]
Toropov, A.A.; Toropova, A.P.; Beeg, M.; Gobbi, M.; Salmona, M. QSAR model for blood-brain barrier permeation. J. Pharmacol. Toxicol. Methods, 2017, 88(Pt 1), 7-18.
[http://dx.doi.org/10.1016/j.vascn.2017.04.014] [PMID: 28476566]
[76]
Toropova, A.P.; Toropov, A.A.; Benfenati, E. CORAL: prediction of binding affinity and efficacy of thyroid hormone receptor ligands. Eur. J. Med. Chem., 2015, 101, 452-461.
[http://dx.doi.org/10.1016/j.ejmech.2015.07.012] [PMID: 26188619]
[77]
Kumar, A.; Chauhan, S. Use of Simplified Molecular Input Line Entry System and molecular graph based descriptors in prediction and design of pancreatic lipase inhibitors. Future Med. Chem., 2018, 10(13), 1603-1622.
[http://dx.doi.org/10.4155/fmc-2018-0024] [PMID: 30028205]
[78]
Fatemi, M.H.; Malekzadeh, H. CORAL: Predictions of retention indices of volatiles in cooking rice using representation of the molecular structure obtained by combination of SMILES and graph approaches. J. Iran. Chem. Soc., 2015, 12(3), 405-412.
[http://dx.doi.org/10.1007/s13738-014-0497-4]
[79]
Toropova, A.P.; Toropov, A.A. CORAL software: prediction of carcinogenicity of drugs by means of the Monte Carlo method. Eur. J. Pharm. Sci., 2014, 52(1), 21-25.
[http://dx.doi.org/10.1016/j.ejps.2013.10.005] [PMID: 24514451]
[80]
Toropova, A.P.; Toropov, A.A.; Diaza, R.G.; Benfenati, E.; Gini, G. Analysis of the co-evolutions of correlations as a tool for QSAR-modeling of carcinogenicity: An unexpected good prediction based on a model that seems untrustworthy. Cent. Eur. J. Chem., 2011, 9(1), 165-174.
[81]
Toropov, A.A.; Toropova, A.P.; Benfenati, E. SMILES-based optimal descriptors: QSAR modeling of carcinogenicity by balance of correlations with ideal slopes. Eur. J. Med. Chem., 2010, 45(9), 3581-3587.
[http://dx.doi.org/10.1016/j.ejmech.2010.05.002] [PMID: 20570021]
[82]
Toropova, A.P.; Toropov, A.A. CORAL: QSAR models for carcinogenicity of organic compounds for male and female rats. Comput. Biol. Chem., 2018, 72, 26-32.
[http://dx.doi.org/10.1016/j.compbiolchem.2017.12.012] [PMID: 29310001]
[83]
Toropov, A.A.; Toropova, A.P. Application of the Monte Carlo method for building up models for octanol-water partition coefficient of platinum complexes. Chem. Phys. Lett., 2018, 701, 137-146.
[http://dx.doi.org/10.1016/j.cplett.2018.04.012]
[84]
Toropov, A.A.; Toropova, A.P.; Cappellini, L.; Benfenati, E.; Davoli, E. QSPR analysis of threshold of odor for the large number of heterogenic chemicals. Mol. Divers., 2018, 22(2), 397-403.
[http://dx.doi.org/10.1007/s11030-017-9800-5] [PMID: 29209954]
[85]
Toropova, A.P.; Toropov, A.A.; Benfenati, E.; Gini, G.; Leszczynska, D.; Leszczynski, J. CORAL: QSPRs of enthalpies of formation of organometallic compounds. J. Math. Chem., 2013, 51(7), 1684-1693.
[http://dx.doi.org/10.1007/s10910-013-0177-0]
[86]
Sokolović, D.; Stanković, V.; Toskić, D.; Lilić, L.; Ranković, G.; Ranković, J.; Nedin-Ranković, G.; Veselinović, A.M. Monte Carlo-based QSAR modeling of dimeric pyridinium compounds and drug design of new potent acetylcholine esterase inhibitors for potential therapy of myasthenia gravis. Struct. Chem., 2016, 27(5), 1511-1519.
[http://dx.doi.org/10.1007/s11224-016-0776-z]
[87]
Gaikwad, R.; Ghorai, S.; Amin, S.A.; Adhikari, N.; Patel, T.; Das, K.; Jha, T.; Gayen, S. Monte Carlo based modelling approach for designing and predicting cytotoxicity of 2-phenylindole derivatives against breast cancer cell line MCF7. Toxicol. In Vitro, 2018, 52, 23-32.
[http://dx.doi.org/10.1016/j.tiv.2018.05.016] [PMID: 29864472]
[88]
Toropov, A.A.; Toropova, A.P.; Puzyn, T.; Benfenati, E.; Gini, G.; Leszczynska, D.; Leszczynski, J. QSAR as a random event: modeling of nanoparticles uptake in PaCa2 cancer cells. Chemosphere, 2013, 92(1), 31-37.
[http://dx.doi.org/10.1016/j.chemosphere.2013.03.012] [PMID: 23566368]
[89]
Toropov, A.A.; Toropova, A.P.; Benfenati, E.; Gini, G.; Puzyn, T.; Leszczynska, D.; Leszczynski, J. Novel application of the CORAL software to model cytotoxicity of metal oxide nanoparticles to bacteria Escherichia coli. Chemosphere, 2012, 89(9), 1098-1102.
[http://dx.doi.org/10.1016/j.chemosphere.2012.05.077] [PMID: 22704203]
[90]
Toropov, A.A.; Toropova, A.P. Quasi-QSAR for mutagenic potential of multi-walled carbon-nanotubes. Chemosphere, 2015, 124(1), 40-46.
[http://dx.doi.org/10.1016/j.chemosphere.2014.10.067] [PMID: 25465947]
[91]
Toropova, A.P.; Toropov, A.A.; Rallo, R.; Leszczynska, D.; Leszczynski, J. Optimal descriptor as a translator of eclectic data into prediction of cytotoxicity for metal oxide nanoparticles under different conditions. Ecotoxicol. Environ. Saf., 2015, 112, 39-45.
[http://dx.doi.org/10.1016/j.ecoenv.2014.10.003] [PMID: 25463851]
[92]
Toropova, A.P.; Toropov, A.A. Optimal descriptor as a translator of eclectic information into the prediction of membrane damage by means of various TiO(2) nanoparticles. Chemosphere, 2013, 93(10), 2650-2655.
[http://dx.doi.org/10.1016/j.chemosphere.2013.09.089] [PMID: 24161577]
[93]
Toropov, A.A.; Toropova, A.P. Quasi-SMILES and nano-QFAR: united model for mutagenicity of fullerene and MWCNT under different conditions. Chemosphere, 2015, 139, 18-22.
[http://dx.doi.org/10.1016/j.chemosphere.2015.05.042] [PMID: 26026259]
[94]
Toropova, A.P.; Toropov, A.A.; Benfenati, E.; Korenstein, R.; Leszczynska, D.; Leszczynski, J. Optimal nano-descriptors as translators of eclectic data into prediction of the cell membrane damage by means of nano metal-oxides. Environ. Sci. Pollut. Res. Int., 2015, 22(1), 745-757.
[http://dx.doi.org/10.1007/s11356-014-3566-4] [PMID: 25223357]
[95]
Toropova, A.P.; Toropov, A.A.; Benfenati, E.; Puzyn, T.; Leszczynska, D.; Leszczynski, J. Optimal descriptor as a translator of eclectic information into the prediction of membrane damage: the case of a group of ZnO and TiO2 nanoparticles. Ecotoxicol. Environ. Saf., 2014, 108, 203-209.
[http://dx.doi.org/10.1016/j.ecoenv.2014.07.005] [PMID: 25086232]
[96]
Toropova, A.P.; Toropov, A.A.; Benfenati, E.; Korenstein, R. QSAR model for cytotoxicity of SiO2 nanoparticles on human lung fibroblasts. J. Nanopart. Res., 2014, 16(2), 2282.
[http://dx.doi.org/10.1007/s11051-014-2282-9]
[97]
Toropova, A.P.; Toropov, A.A.; Veselinović, A.M.; Veselinović, J.B.; Benfenati, E.; Leszczynska, D.; Leszczynski, J. Nano-QSAR: Model of mutagenicity of fullerene as a mathematical function of different conditions. Ecotoxicol. Environ. Saf., 2016, 124, 32-36.
[http://dx.doi.org/10.1016/j.ecoenv.2015.09.038] [PMID: 26452192]
[98]
Toropova, A.P.; Toropov, A.A.; Puzyn, T.; Benfenati, E.; Leszczynska, D.; Leszczynski, J. Optimal descriptor as a translator of eclectic information into the prediction of thermal conductivity of micro-electro-mechanical systems. J. Math. Chem., 2013, 51(8), 2230-2237.
[http://dx.doi.org/10.1007/s10910-013-0211-2]
[99]
Toropov, A.A.; Achary, P.G.R.; Toropova, A.P. Quasi-SMILES and nano-QFPR: The predictive model for zeta potentials of metal oxide nanoparticles. Chem. Phys. Lett., 2016, 660, 107-110.
[http://dx.doi.org/10.1016/j.cplett.2016.08.018]
[100]
Toropov, A.A.; Sizochenko, N.; Toropova, A.P.; Leszczynski, J. Towards the development of global Nano-Quantitative Structure–Property Relationship models: Zeta potentials of metal oxide nanoparticles. Nanomaterials (Basel), 2018, 8(4), 243.
[http://dx.doi.org/10.3390/nano8040243] [PMID: 29662037]
[101]
Toropova, A.P.; Toropov, A.A.; Leszczynska, D.; Leszczynski, J. CORAL and Nano-QFAR: Quantitative feature - Activity relationships (QFAR) for bioavailability of nanoparticles (ZnO, CuO, Co3O4, and TiO2). Ecotoxicol. Environ. Saf., 2017, 139, 404-407.
[http://dx.doi.org/10.1016/j.ecoenv.2017.01.054] [PMID: 28192776]
[102]
Toropova, A.P.; Toropov, A.A.; Veselinovic, J.B.; Vesélinovic, A.M.; Benfenati, E.; Leszczynska, D.; Leszczynski, J. Application of the Monte Carlo method to prediction of dispersibility of graphene in various solvents. Int. J. Environ. Res., 2015, 9(4), 1211-1216.
[103]
Toropova, A.P.; Toropov, A.A. Mutagenicity: QSAR - quasi-QSAR - nano-QSAR. Mini Rev. Med. Chem., 2015, 15(8), 608-621.
[http://dx.doi.org/10.2174/1389557515666150219121652] [PMID: 25694078]
[104]
Toropova, A.P.; Toropov, A.A.; Rallo, R.; Leszczynska, D.; Leszczynski, J. Nano-QSAR: Genotoxicity of multi-walled carbon nanotubes. Int. J. Environ. Res., 2016, 10(1), 59-64.
[105]
Toropova, A.P.; Toropov, A.A. Assessment of nano-QSPR models of organic contaminant absorption by carbon nanotubes for ecological impact studies. Materials Discovery, 2016, 4, 22-28.
[http://dx.doi.org/10.1016/j.md.2016.03.003]
[106]
Toropova, A.P.; Toropov, A.A.; Manganelli, S.; Leone, C.; Baderna, D.; Benfenati, E.; Fanelli, R. Quasi-SMILES as a tool to utilize eclectic data for predicting the behavior of nanomaterials. NanoImpact, 2016, 1, 60-64.
[http://dx.doi.org/10.1016/j.impact.2016.04.003]
[107]
Leone, C.; Bertuzzi, E.E.; Toropova, A.P.; Toropov, A.A.; Benfenati, E. CORAL: Predictive models for cytotoxicity of functionalized nanozeolites based on quasi-SMILES. Chemosphere, 2018, 210, 52-56.
[http://dx.doi.org/10.1016/j.chemosphere.2018.06.161] [PMID: 29986223]
[108]
Toropov, A.A.; Toropova, A.P.; Raska, I., Jr; Benfenati, E.; Gini, G. QSAR modeling of endpoints for peptides which is based on representation of the molecular structure by a sequence of amino acids. Struct. Chem., 2012, 23(6), 1891-1904.
[http://dx.doi.org/10.1007/s11224-012-9995-0]
[109]
Toropova, M.A.; Veselinović, A.M.; Veselinović, J.B.; Stojanović, D.B.; Toropov, A.A. QSAR modeling of the antimicrobial activity of peptides as a mathematical function of a sequence of amino acids. Comput. Biol. Chem., 2015, 59(Pt A), 126-130.,
[http://dx.doi.org/10.1016/j.compbiolchem.2015.09.009] [PMID: 26454621]
[110]
Toropova, A.P.; Toropov, A.A.; Beeg, M.; Gobbi, M.; Salmona, M. Utilization of the Monte Carlo method to build up QSAR models for hemolysis and cytotoxicity of antimicrobial peptides. Curr. Drug Discov. Technol., 2017, 14(4), 229-243.
[http://dx.doi.org/10.2174/1570163814666170525114128] [PMID: 28545350]
[111]
Toropova, A.P.; Toropov, A.A.; Benfenati, E. Semi-correlations as a tool to build up categorical (active/inactive) model of GABAA receptor modulator activity (2019). Struct. Chem., 2019, 30(3), 853-861.
[http://dx.doi.org/10.1007/s11224-018-1226-x]
[112]
Toropova, A.P.; Toropov, A.A.; Veselinović, A.M.; Veselinović, J.B.; Leszczynska, D.; Leszczynski, J. Semi-correlations combined with the Index of Ideality of Correlation: a tool to build up model of mutagenic potential. Mol. Cell. Biochem., 2018.
[PMID: 30074137]
[113]
Toropova, A.P.; Toropov, A.A. CORAL: Binary classifications (active/inactive) for drug-induced liver injury. Toxicol. Lett., 2017, 268, 51-57.
[http://dx.doi.org/10.1016/j.toxlet.2017.01.011] [PMID: 28111161]
[114]
Toropova, A.P.; Toropov, A.A.; Benfenati, E.; Gini, G.; Leszczynska, D.; Leszczynski, J. CORAL: Models of toxicity of binary mixtures. Chemom. Intell. Lab. Syst., 2012, 119, 39-43.
[http://dx.doi.org/10.1016/j.chemolab.2012.10.001]
[115]
Duchowicz, P.R.; Bacelo, D.E.; Fioressi, S.E.; Palermo, V.; Ibezim, N.E.; Romanelli, G.P. QSAR studies of indoyl aryl sulfides and sulfones as reverse transcriptase inhibitors. Med. Chem. Res., 2018, 27(2), 420-428.
[http://dx.doi.org/10.1007/s00044-017-2069-5]
[116]
Toropova, A.P.; Toropov, A.A.; Leszczynska, D.; Leszczynski, J. The Index of Ideality of Correlation: hierarchy of Monte Carlo models for glass transition temperatures of polymers. J. Polym. Res., 2018, 25(10), 221.
[http://dx.doi.org/10.1007/s10965-018-1618-z]
[117]
Toropov, A.A.; Toropova, A.P. The Index of Ideality of Correlation: A criterion of predictive potential of QSPR/QSAR models? In: Mut. Res. Gen. Tox. En. Mut; , 2017; 819, pp. 31-37.
[118]
Toropova, A.P.; Toropov, A.A. The index of ideality of correlation: A criterion of predictability of QSAR models for skin permeability? Sci. Total Environ., 2017, 586, 466-472.
[http://dx.doi.org/10.1016/j.scitotenv.2017.01.198] [PMID: 28196626]
[119]
Toropov, A.A.; Carbó-Dorca, R.; Toropova, A.P. Index of Ideality of Correlation: new possibilities to validate QSAR: a case study. Struct. Chem., 2018, 29(1), 33-38.
[http://dx.doi.org/10.1007/s11224-017-0997-9]
[120]
Toropova, A.P.; Toropov, A.A. Use of the index of ideality of correlation to improve models of eco-toxicity. Environ. Sci. Pollut. Res. Int., 2018, 25(31), 31771-31775.
[http://dx.doi.org/10.1007/s11356-018-3291-5] [PMID: 30255265]
[121]
Scior, T.; Medina-Franco, J.L.; Do, Q-T.; Martínez-Mayorga, K.; Yunes Rojas, J.A.; Bernard, P. How to recognize and workaround pitfalls in QSAR studies: a critical review. Curr. Med. Chem., 2009, 16(32), 4297-4313.
[http://dx.doi.org/10.2174/092986709789578213] [PMID: 19754417]
[122]
Saito, H.; Osumi, M.; Hirano, H.; Shin, W.; Nakamura, R.; Ishikawa, T. Technical pitfalls and improvements for high-speed screening and QSAR analysis to predict inhibitors of the human bile salt export pump (ABCB11/BSEP). AAPS J., 2009, 11(3), 581-589.
[http://dx.doi.org/10.1208/s12248-009-9137-9] [PMID: 19688600]
[123]
Cronin, M.T.D.; Schultz, T.W. Pitfalls in QSAR. J. Mol. Struct. THEOCHEM, 2003, 622(1-2), 39-51.
[http://dx.doi.org/10.1016/S0166-1280(02)00616-4]

Rights & Permissions Print Cite
© 2024 Bentham Science Publishers | Privacy Policy