[1]
Rumfeldt, J.A.O.; Galvagnion, C.; Vassall, K.A.; Meiering, E.M. Conformational stability and folding mechanisms of dimeric proteins. Prog. Biophys. Mol. Biol., 2008, 98(1), 61-84.
[2]
Eftink, M.R.; Helton, K.J.; Beavers, A.; Ramsay, G.D. The unfolding of trp aporepressor as a function of pH: Evidence for an unfolding intermediate. Biochemistry, 1994, 33(34), 10220-10228.
[3]
Hornby, J.A.T.; Luo, J.K.; Stevens, J.M.; Wallace, L.A.; Kaplan, W.; Armstrong, R.N.; Dirr, H.W. Equilibrium folding of dimeric class µ glutathione transferases involves a stable monomeric intermediate. Biochemistry, 2000, 39, 12336-12344.
[4]
Park, Y.C.; Bedouelle, H. Dimeric tyrosyl-tRNA synthetase from Bacillus stearothermophilus unfolds through a monomeric intermediate a quantitative analysis under equilibrium conditions. J. Bio. Chem., 1998, 273(29), 18052-18059.
[5]
Clark, A.C.; Sinclair, J.F.; Baldwin, T.O. Folding of bacterial luciferase involves a non-native heterodimeric intermediate in equilibrium with the native enzyme and the unfolded subunits. J. Bio. Chem., 1993, 268(15), 10773-10779.
[6]
Grimsley, J.K.; Scholtz, J.M.; Pace, C.N.; Wild, J.R. Organophosphorus hydrolase is a remarkably stable enzyme that unfolds through a homodimeric interrmediate. Biochemistry, 1997, 36(47), 14366-14374.
[7]
Neet, K.E.; Timm, D.E. Conformational stability of dimeric proteins: Quantitative studies by equilibrium denaturation. Protein Sci., 1994, 3, 2167-2174.
[8]
Kaplan, W.; Husler, P.; Klump, H.; Erhardt, J.; Cremer, N.S.; Dirr, H. Conformational stability of pGEX-expressed Schistosoma japonicum glutathione S-transferase: A detoxification enzyme and fusion-protein affinity tag. Protein Sci., 1997, 6, 399-406.
[9]
Berg, J.M.; Tymoczko, J.L.; Stryer, L. Biochemistry, 5th ed; W.H. Freeman: New York, USA, 2002.
[10]
O’Donoghue, P.; Luthey-Schulten, Z. On the evolution of structure in aminoacyl-tRNA synthetases. Microbiol. Mol. Biol. Rev., 2003, 67(4), 550-573.
[11]
Eriani, G.; Delarue, M.; Poch, O.; Gangloff, J.; Moras, D. Partition of tRNA synthetases into two classes based on mutually exclusive sets of sequence motifs. Nature, 1990, 347(6289), 203-206.
[12]
Cusack, S. Aminoacyl-tRNA synthetases. Curr. Opin. Struct. Biol., 1997, 7(6), 881-889.
[13]
Cusack, S.; Härtlein, M.; Leberman, R. Sequence, structural and evolutionary relationships between class II aminoacyl-tRNA synthetases. Nucleic Acids Res., 1991, 19(13), 3489-3498.
[14]
Perona, J.J., and ; Hadd, A. Structural diversity and protein engineering of the aminoacyl-tRNA synthetases. Biochemistry, 2012, 51, 8705-8729.
[15]
Ibba, M., and ; Soll, D. Aminoacyl-tRNA synthesis. Annu. Rev. Biochem., 2000, 69, 617-650.
[16]
Bullwinkle, T.J.; Ibba, M. Emergence and evolution. Top. Curr. Chem., 2014, 344, 43-87.
[17]
Walter, F.; Putz, J.; Giege, R.; Westhof, E. Binding of tobramycin leads to conformational changes in yeast tRNAAsp and inhibition of aminoacylation. EMBO J., 2002, 21, 760-768.
[18]
Mikkelsen, N.E.; Johansson, K.; Virtanen, A.; Kirsebom, L.A. Aminoglycoside binding displaces a divalent metal ion in a tRNA-neomycin B complex. Nat. Struct. Biol., 2001, 8, 510-514.
[19]
Pham, J.S.; Dawson, K.L.; Jackson, K.E.; Lim, E.E.; Pasaje, C.F.; Turner, K.E.; Ralph, S.A. Aminoacyl-tRNA synthetases as drug targets in eukaryotic parasites. Int. J. Parasitol. Drugs Drug Resist., 2013, 4(1), 1-13.
[20]
Hurdle, J.G.; O’Neill, A.J.; Chopra, I. Prospects for aminoacyl-tRNA synthetase inhibitors as new antimicrobial agents. Antimicrob. Agents Chemother., 2005, 49(12), 4821-4833.
[21]
Hoen, R.; Novoa, E.M.; López, A.; Camacho, N.; Cubells, L.; Vieira, P.; Santos, M.; Marin-Garcia, P.; Bautista, J.M.; Cortés, A.; Ribas de Pouplana, L.; Royo, M. Selective inhibition of an apicoplastic aminoacyl-tRNA synthetase from Plasmodium falciparum. ChemBioChem, 2013, 14(4), 499-509.
[22]
Khan, S. Recent advances in the biology and drug targeting of malaria parasite aminoacyl-tRNA synthetases. Malar. J., 2016, 15, 203.
[23]
Jothi, D.J.; Dhanraj, M.; Solaiappan, S.; Sivanesan, S.; Kron, M.; Dhanasekaran, A. Brugia malayi Asparaginyl-tRNA synthetase stimulates endothelial cell proliferation, vasodilation and angiogenesis. PLoS One, 2016, 12(2), e0171402.
[24]
Gowri, V.S.; Ghosh, I.; Sharma, A.; Madhubala, R. Unusual domain architecture of aminoacyl tRNA synthetases and their paralogs from Leishmania major. BMC Genomics, 2012, 13, 621-636.
[25]
Berthet-Colominas, C.; Seignovert, L.; Härtlein, M.; Grotli, M.; Cusack, S.; Leberman, R. The crystal structure of asparaginyl-tRNA synthetase from Thermus thermophilus and its complexes with ATP and asparaginyl-adenylate: The mechanism of discrimination between asparagine and aspartic acid. EMBO J., 1998, 17(10), 2947-2960.
[26]
Kalidas, S.; Cestari, I.; Monnerat, S.; Li, Q.; Regmi, S.; Hasle, N.; Labaied, M.; Parsons, M.; Stuart, K.; Phillips, M.A. Genetic validation of aminoacyl-tRNA synthetases as drug targets in Trypanosoma brucei. Eukaryotic Cell J., 2014, 13(4), 504-516.
[27]
Ryan, K.J.; Ray, C.G. Sherris Medical Microbiology, 4th ed; McGraw Hill: New York City, USA, 2004, pp. 733-738.
[28]
Tanyuksel, M.; Petri, W.A., Jr Laboratory diagnosis of amebiasis. Clin. Microbiol. Rev., 2003, 16(4), 713-729.
[29]
Rodríguez, L.; Cervantes, E.; Ortiz, R. Malnutrition and gastrointestinal and respiratory infections in children: A public health problem. Int. J. Environ. Res. Public Health, 2011, 8(4), 1174-1205.
[30]
Larson, E.T.; Merritt, E.A. Medical Structural Genomics of Pathogenic Protozoa 2010. PDB ID: 3M4Q
[31]
Park, Y.C.; Bedouelle, H. Dimeric tyrosyl-tRNA synthetase from Bacillus stearothermophilus unfolds through a monomeric intermediate. J. Bio. Chem., 1998, 273(17), 18052-18059.
[32]
Dignam, J.D.; Qu, X.; Chaires, J.B. Equilibrium unfolding of Bombyx mori glycyl-tRNA synthetase. J. Bio. Chem., 2001, 276(6), 4028-4037.
[33]
Banerjee, B.; Banerjee, R. Guanidine hydrochloride mediated denaturation of E. coli alanyl-tRNA synthetase: Identification of an inactive dimeric intermediate. Protein J., 2014, 33, 119-127.
[34]
Alexandrov, A.; Vignali, M.; LaCount, D.J.; Quartley, E.; de Vries, C.; De Rosa, D.; Babulski, J.; Mitchell, S.F.; Schoenfeld, L.W.; Fields, S.; Hol, W.G.; Dumont, M.E.; Phizicky, E.M.; Grayhack, E.J. A facile method for high-throughput co-expression of protein pairs. Mol. Cell. Proteomics, 2004, 3(9), 934-938.
[35]
Guild, K.; Zhang, Y.; Stacy, R.; Mundt, E.; Benbow, S.; Green, A.; Myler, P.J. Wheat germ cell-free expression system as a pathway to improve protein yield and solubility for the SSGCID pipeline. Struc. Biol. Cryst. Comm., 2011, 67(9), 1027-1031.
[36]
Studier, F.W. Protein production by auto-induction in high-density shaking cultures. Protein Exp. Pur., 2005, 41, 207-234.
[37]
Kenoth, R.; Swami, M.J. Steady-state and time resolved fluorescence studies on Trichosanthes cucumerina seed lectin. J. Photochem. Photobiol. B Biol, 2003, 69, 193-201.
[38]
Sreejith, R.K.; Yadav, V.N.; Varshney, N.K.; Berwal, S.K.; Suresh, C.G.; Gaikwad, S.M.; Pal, J.K. Conformational characterization of human eukaryotic initiation factor 2α: A single tryptophan protein. J. Biochem. Biophy. Res. Comm., 2009, 390, 273-279.
[39]
Kishore, D.; Kundu, S.; Kayastha, A.M. Thermal, chemical and pH induced denaturation of a multimeric β-galactosidase reveals multiple unfolding pathways. PLoS One, 2012, 7(11), 1-9.
[40]
Lavinder, J.J.; Hari, S.B.; Sullivan, B.J.; Magliery, T.J. High-throughput thermal scanning: A general, rapid dye-binding thermal shift screen for protein engineering. J. Am. Chem. Soc., 2009, 131(11), 3794-3795.
[41]
Chatterjee, A.; Mandal, D.K. Denaturant-induced equilibrium unfolding of concanavalin A is expressed by a three-state mechanism and provides an estimate of its protein stability. Biochem. Biophys. Acta, 2003, 1648(2), 174-183.
[42]
Baez, M.; Cabrera, R.; Guixé, V.; Babul, J. Unfolding pathway of the dimeric and tetrameric forms of phosphofructokinase-2 from Escherichia coli. Biochemistry, 2007, 46(20), 6141-6148.
[43]
Mukherjee, S.; Saha, B.; Das, A.K. Differential chemical and thermal unfolding pattern of Rv3588c and Rv1284 of Mycobacterium tuberculosis - A comparison by fluorescence and circular dichroism spectroscopy. Biophys. Chem., 2009, 141, 94-104.
[44]
Eftink, M.R.; Ghiron, C.A. Exposure of tryptophanyl residues in proteins quantitative determination by fluorescence quenching studies. Biochemistry, 1976, 15(3), 672-680.
[45]
Cestari, I.; Stuart, K. A Spectrophotometric Assay for quantitative measurement of aminoacyl-tRNA synthetase activity. J. Biomol. Screening., 2012, 18(4), 490-497.
[46]
Danel, F.; Caspers, P.; Nuoffer, C.; Härtlein, M.; Kron, M.A. Page, M.G. Asparaginyl-tRNA synthetase pre-transfer editing Assay. Curr. Drug Disc. Tech., 2011, 8, 66-75.
[47]
Grove, A.; Kushwaha, A.K.; Nguyen, K.H. Protein Cages: Methods and Protocols, Ch-9 Determining the role of metal binding in protein cage assembly. Methods in Molecular Biology. In: Thermal Stability Assay; Orner, B.P., Ed.; Humana Press: New York City, USA, 2014; Vol. 1252, pp. 91-100.
[48]
Eftink, M.R. Fluorescence techniques for studying protein structure. Methods Biochem. Anal., 1991, 35, 127-205.
[49]
Tripathi, P.; Hofmann, H.; Kayastha, A.M.; Ulbrich-Hofmann, R. Conformational stability and integrity of a-amylase from mung beans: Evidence of kinetic intermediate in GdmCl-induced unfolding. Biophys. Chem., 2008, 137, 95-99.
[50]
Harder, M.; Deinzer, M.L.; Leid, M.E.; Schimerlik, M.I. Global analysis of three state protein unfolding data. Protein Sci., 2004, 13(8), 2207-2222.
[51]
Riley, W.P.; Cheng, H.; Samuel, D.; Roder, H.; Walsh, P.N. Dimer dissociation and unfolding mechanism of coagulation factor XI Apple 4 domain: Spectroscopic and mutational analysis. J. Mol. Bio., 2007, 367(2), 558-573.
[52]
Telley, K.; Alexov, E. On the pH-optimum of activity and stability of proteins. Proteins, 2010, 78(12), 2699-2706.
[53]
Semisotnov, G.V.; Rodionova, N.A.; Razgulyaev, O.I.; Uversky, V.N.; Gripas, A.F.; Gilmanshin, R.I. Study of the “molten globule” intermediate state in protein folding by a hydrophobic fluorescent probe. Biopolymers, 1991, 31(1), 119-128.
[54]
Diamandis, E.P.; Christopoulos, T.K. Nonradioactive analysis of biomolecules. Time-Resolved Fluorescence, Ch-23, Springer Lab Manual, , 289-294.
[55]
Phillips, S.R.; Wilson, L.J.; Borkman, R.F. Acrylamide and iodide fluorescence quenching as a structural probe of tryptophan microenvironment in bovine lens crystallins. Curr. Eye Res., 1986, 5(8), 611-619.
[56]
Strambini, G.B.; Gonnelli, M. Fluorescence quenching of buried trp residues by acrylamide does not require penetration of the protein fold. J. Phys. Chem. B, 2010, 114(2), 1089-1093.
[57]
Xing, D.; Yi, L.; Yuan-Ling, X.; Shi-Meng, A.; Jing, L.; Peng, S.; Xing-Lai, J.; Shu-Qun, L. Insights into protein – ligand interactions: Mechanisms, models, and methods. Int. J. Of Mol. Sci., 2016, 17(2), 144.
[58]
Ghai, R.; Falconer, R.J.; Collins, B.M. Applications of isothermal titration calorimetry in pure and applied research--survey of the literature from 2010. J. Mol. Recognit., 2012, 25(1), 32-52.
[59]
Grolier, J.P.E.; del Rio, J.M. Isothermal titration calorimetry: A thermodynamic interpretation of measurements. J. Chem. Therm., 2012, 55, 193-202.
[60]
Chuawong, P.; Hendrickson, T.L. The nondiscriminating aspartyl-tRNA synthetase from Helicobacter pylori: Anticodon-binding domain mutations that impact tRNA specificity and heterologous toxicity. Biochemistry, 2006, 45(26), 8079-8087.
[61]
Choi, H.; Gabriel, K.; Schneider, J.; Otten, S.; McClain, W.H. Recognition of acceptor-stem structure of tRNA(Asp) by Escherichia coli aspartyl-tRNA synthetase. RNA, 2003, 9(4), 386-393.
[62]
Briand, C.; Poterszman, A.; Eiler, S.; Webster, G.; Thierry, J.C.; Moras, D. An intermediate step in the recognition of tRNA(Asp) by aspartyl-tRNA synthetase. J. Bio. Mol., 2000, 299(4), 1051-1060.
[63]
Francin, M.; Kaminska, M.; Kerjan, P.; Mirande, M. The N-terminal domain of mammalian lysyl-tRNA synthetase is a functional tRNA-binding domain. J. Bio Chem., 2002, 277(3), 1762-1769.
[64]
Guo, M.; Ignatov, M.; Musier-Forsyth, K.; Schimmel, P.; Yang, X.L. Crystal structure of tetrameric form of human lysyl-tRNA synthetase: Implications for multisynthetase complex formation. PNAS, 2008, 105(7), 2331-2336.
[65]
Dams, T.; Jaenicke, R. Stability and folding of dihydrofolate reductase from the hyperthermophilic bacterium Thermotoga maritima. Biochemistry, 1999, 38(28), 9169-9178.
[66]
Andersen, N.H. Protein structure, stability and folding. In: Methods in Molecular Biology; Humana Press: New York City, USA, 2010; Vol. 168, .
[67]
Sundd, M.; Kundu, S.; Jagannadham, M.V. Acid and chemical induced conformational changes of Ervatamin B. Presence of partially structured multiple intermediates. J. Biochem. Mol. Biol., 2002, 35, 143-154.
[68]
Mok, Y.K.; Gay, G.; Butler, P.J.; Bycroft, M. Equilibrium dissociation and unfolding of the dimeric human papillomavirus strain-16 E2 DNA-binding domain. Protein Sci., 1996, 5, 310-319.
[69]
Zwanzig, R. Two-state models of protein folding kinetics. PNAS, 1997, 94(1), 148-150.
[70]
Frimurer, T.M.; Peters, G.H.; Iversen, L.F.; Andersen, H.S.; Moller, N.P.H.; Olsen, O.H. Ligand-induced conformational changes: Improved predictions of ligand binding conformations and affinities. Biophys. J., 2003, 84(4), 2273-2281.
[71]
Koike, R.; Amemiya, T.; Ota, M.; Kidera, A. Protein structural change upon ligand binding correlates with enzymatic reaction mechanism. J. Mol. Bio., 2008, 379(3), 397-401.
[72]
Möller, M.; Denicola, A. Protein tryptophan accessibility studied by fluorescence quenching. Biochem. Mo. Bio. Edu., 2002, 30(3), 175-178.
[73]
Lakowicz, J.R. Principles of Fluorescence Spectroscopy, 3rd edition; Springer Publishers: Berlin, Germany, 2007.