[1]
Son, N.T.; Noh, J.S.; Park, S. Role of ZnO thin film in the vertically aligned growth of ZnO nanorods by chemical bath deposition. Appl. Surf. Sci., 2016, 379, 440-445.
[2]
Greene, L.E.; Yuhas, B.D.; Law, M.; Zitoun, D.; Yang, P. Solution-grown zinc oxide nanowires. Inorg. Chem., 2006, 45(19), 7535-7543.
[3]
Kim, K.H.; Utashiro, K.; Abe, Y.; Kawamura, M. Growth of zinc oxide nanorods using various seed layer annealing temperatures and substrate materials. Int. J. Electrochem. Sci., 2014, 9, 2080-2089.
[4]
Lucas, M.; Wang, Z.L.; Riedo, E. Growth direction and morphology of ZnO nanobelts revealed by combining in situ atomic force microscopy and polarized Raman spectroscopy. Phys. Rev. B, 2010, 81, 045415.
[5]
Zhang, N.; Yi, R.; Shi, R.; Gao, G.; Chen, G.; Liu, X. Novel rose-like ZnO nanoflowers synthesized by chemical vapor deposition. Mater. Lett., 2009, 63(3), 496-499.
[6]
Yong-Zhe, Z.; Li-Hui, W.; Yan-Ping, L.; Er-Qing, X.; De, Y.; Jiang-Tao, C. Preparation of ZnO nanospheres and their applications in dye-sensitized solar cells. Chin. Phys. Lett., 2009, 26(3), 038201.
[7]
Hughes, W.L.; Wang, Z.L. Controlled synthesis and manipulation of ZnO nanorings and nanobows. Appl. Phys. Lett., 2005, 86(4), 043106.
[8]
Gui, Z.; Liu, J.; Wang, Z.; Song, L.; Hu, Y.; Fan, W.; Chen, D. From muticomponent precursor to nanoparticle nanoribbons of ZnO. J. Phys. Chem. B-Condens. Phase, 2005, 109(3), 1113-1117.
[9]
Sun, Y.; Seo, J.H.; Takacs, C.J.; Seifter, J.; Heeger, A.J. Inverted polymer solar cells integrated with a low‐temperature‐annealed sol‐gel‐derived ZnO film as an electron transport layer. Adv. Mater., 2011, 23(4), 1679-1683.
[10]
Park, K.; Lee, D.; Kim, B.; Jeon, H.; Lee, N.; Whang, D.; Lee, H.; Kim, Y.J.; Ahn, J. Stretchable, transparent zinc oxide thin film transistors. Adv. Funct. Mater., 2010, 20, 3577-3582.
[11]
Tsay, C.; Fan, K.; Wang, Y.; Chang, C.; Tseng, Y.; Lin, C. Transparent semiconductor zinc oxide thin films deposited on glass substrates by sol-gel process. Ceram. Int., 2010, 36(6), 1791-1795.
[12]
Wang, X.; Wang, X.; Song, J.; Summers, C.J.; Ryou, J.H.; Li, P.; Dupuis, R.D.; Wang, Z.L. Density-controlled growth of aligned ZnO nanowires sharing a common contact: A simple, low-cost, and mask-free technique for large-scale applications. J. Phys. Chem. B, 2006, 110(15), 7720-7724.
[13]
Okada, T.; Agung, B.H.; Nakata, Y. ZnO nano-rods synthesized by nano-particle-assisted pulsed-laser deposition. Appl. Phys., A Mater. Sci. Process., 2004, 79(4), 1417-1419.
[14]
Li, C.; Furuta, T.; Matsuda, T.; Hiramatsu, H.; Furuta, H.; Hirao, T. Effects of substrate on the structural, electrical and optical properties of Al-doped ZnO films prepared by radio frequency magnetron sputtering. Thin Solid Films, 2009, 517(11), 3265-3268.
[15]
Zheng, J.H.; Jiang, Q.; Lian, J.S. Synthesis and optical properties of ZnO nanorods on indium tin oxide substrate. Appl. Surf. Sci., 2011, 258(1), 93-97.
[16]
Schlur, L.; Carton, A.; Lévêque, P.; Guillon, D.; Pourroy, G. Optimization of a new ZnO nanorods hydrothermal synthesis method for solid state dye sensitized solar cells applications. J. Phys. Chem. C, 2013, 117, 2993-3001.
[17]
Wei, S.; Lian, J.; Wu, H. Annealing effect on the photoluminescence properties of ZnO nanorod array prepared by a PLD-assistant wet chemical method. Mater. Charact., 2010, 61(11), 1239-1244.
[18]
Anandan, S.; Miyauchi, M. Ce-doped ZnO (CexZn1−xO) becomes an efficient visible-light-sensitive photocatalyst by co-catalyst (Cu2+) grafting. Phys. Chem. Chem. Phys., 2011, 13, 14937-14945.
[19]
Ty, J.T.D.; Yanagi, H. Electrochemical deposition of zinc oxide nanorods for hybrid solar cells. Jpn. J. Appl. Phys., 2015, 54(4S), 04DK05.
[20]
Jia, G.Z.; Hao, B.X.; Lu, X.C.; Wang, X.L.; Li, Y.M.; Yao, J.H. Solution growth of well aligned ZnO nanorods on sapphire substrate. Acta Phys. Pol. A, 2013, 124, 74-77.
[21]
Dev, A.; Panda, S.K.; Kar, S.; Chakrabarti, S.; Chaudhuri, S. Surfactant-assisted route to synthesize well-aligned ZnO nanorod arrays on sol-gel derived ZnO thin films. J. Phys. Chem. B, 2006, 110(29), 14266-14272.
[22]
Ghodsi, F.E.; Absalan, H. Comparative study of ZnO thin films prepared by different sol-gel route. Acta Phys. Pol. A Gen. Phys., 2010, 118(4), 659.
[23]
Greene, L.E.; Law, M.; Goldberger, J.; Kim, F.; Johnson, J.C.; Zhang, Y.; Saykally, R.J.; Yang, P. Low‐temperature wafer‐scale production of ZnO nanowire arrays. Angew. Chem. Int. Ed., 2003, 42(26), 3031-3034.
[24]
Li, G.; Sundararajan, A.; Mouti, A.; Chang, Y.J.; Lupini, A.R.; Pennycook, S.J.; Strachan, D.R.; Guiton, B.S. Synthesis and characterization of p-n homojunction-containing zinc oxide nanowires. Nanoscale, 2013, 5(6), 2259-2263.
[25]
Foo, K.L.; Kashif, M.; Hashim, U.; Liu, W.W. Effect of different solvents on the structural and optical properties of zinc oxide thin films for optoelectronic applications. Ceram. Int., 2014, 40(1), 753-761.
[26]
Marie, M.; Mandal, S.; Manasreh, O. An electrochemical glucose sensor based on zinc oxide nanorods. Sensors (Basel), 2015, 15(8), 18714-18723.
[27]
Ridha, N.J.; Jumali, M.H.H.; Umar, A.A.; Alosfur, F. Defects controlled ZnO nanorods with high aspect ratio for ethanol detection. Int. J. Electrochem. Sci., 2013, 8, 4583-4594.
[28]
Ji, L.W.; Peng, S.M.; Wu, J.S.; Shih, W.S.; Wu, C.Z.; Tang, I.T. Effect of seed layer on the growth of well-aligned ZnO nanowires. J. Phys. Chem. Solids, 2009, 70(10), 1359-1362.
[29]
Li, C.; Fang, G.; Li, J.; Ai, L.; Dong, B.; Zhao, X. Effect of seed layer on structural properties of ZnO nanorod arrays grown by vapor-phase transport. J. Phys. Chem. C, 2008, 112(4), 990-995.
[30]
Oral, A.Y.; Bahşi, Z.B.; Aslan, M.H. Microstructure and optical properties of nanocrystalline ZnO and ZnO:(Li or Al) thin films. Appl. Surf. Sci., 2007, 253(10), 4593-4598.
[31]
Kohiki, S.; Nishitani, M.; Wada, T. Enhanced electrical conductivity of zinc oxide thin films by ion implantation of gallium, aluminum, and boron atoms. J. Appl. Phys., 1994, 75(4), 2069-2072.
[32]
Wu, T.; Ni, Y.; Ma, X.; Hong, J. La-doped ZnO nanoparticles: Simple solution-combusting preparation and applications in the wastewater treatment. Mater. Res. Bull., 2013, 48(11), 4754-4758.
[33]
American Society for Testing and Material. Powder diffraction files; Joint Committee on Powder Diffraction Standards; Swarthmore, P.A, 1999, 3-88.
[34]
Cullity, B.D. Elements of X-ray Diffraction. Addison- Wesley, Reading, 1978.
[35]
Thangavel, R.; Moirangthem, R.S.; Lee, W.S.; Chang, Y.C.; Wei, P.K.; Kumar, J. Cesium doped and undoped ZnO nanocrystalline thin films: A comparative study of structural and micro‐Raman investigation of optical phonons. J. Raman Spectrosc., 2010, 41(12), 1594-1600.
[36]
Hu, J.; Gordon, R.G. Atmospheric pressure chemical vapor deposition of gallium doped zinc oxide thin films from diethyl zinc, water, and triethyl gallium. J. Appl. Phys., 1992, 72(11), 5381-5392.
[37]
Yilmaz, M.; Caldiran, Z.; Deniz, A.R.; Aydogan, S.; Gunturkun, R.; Turut, A. Preparation and characterization of sol-gel-derived n- ZnO thin film for Schottky diode application. Appl. Phys. A., 2015, 119(2), 547-552.
[38]
Kim, K.H.; Utashiro, K.; Abe, Y.; Kawamura, M. Growth of zinc oxide nanorods using various seed layer annealing temperatures and substrate materials. Int. J. Electrochem. Sci., 2014, 9, 2080-2089.
[39]
Liu, W.L.; Zhang, Y.F. Blueshift of absorption edge and photoluminescence in Al doped ZnO thin films. Integr. Ferroelectr., 2018, 188, 112-120.
[40]
Liu, Y.; Lian, J. Optical and electrical properties of aluminum-doped ZnO thin films grown by pulsed laser deposition. Appl. Surf. Sci., 2007, 253, 3727-3730.
[41]
Mahmood, K.; Song, D.; Park, S.B. Effects of thermal treatment on the characteristics of boron and tantalum-doped ZnO thin films deposited by the electrospraying method at atmospheric pressure. Surf. Coat. Technol., 2012, 206, 4730-4740.
[42]
Kalyanaraman, S.; Thangavel, R.; Vettumperumal, R. High mobility formation of p-type ZnO:Al,N films annealed under NH3 ambient. J. Phys. Chem. Solids, 2013, 74, 504-508.
[43]
Song, J.; Lim, S. Effect of seed layer on the growth of ZnO nanorods. J. Phys. Chem. C, 2007, 111(2), 596-600.
[44]
Cha, S.N.; Song, B.G.; Jang, J.E.; Jung, J.E.; Han, I.T.; Ha, J.H.; Hong, J.P.; Kang, D.J.; Kim, J.M. Controlled growth of vertically aligned ZnO nanowires with different crystal orientation of the ZnO seed layer. Nanotechnology, 2008, 19(23), 235601.
[45]
Chavhan, S.D.; Senthilarasu, S.; Lee, S.H. Annealing effect on the structural and optical properties of a Cd1−x Znx S thin film for photovoltaic applications. Appl. Surf. Sci., 2008, 254(15), 4539-4545.
[46]
Pimentel, A.; Ferreira, S.; Nunes, D.; Calmeiro, T.; Martins, R.; Fortunato, E. Microwave synthesized ZnO nanorod arrays for UV sensors: A seed layer annealing temperature study. Materials, 2016, 9(4), 299.
[47]
Tauc, J. Amorphous and Liquid Semiconductors; Plenum Press: New York, 1974, p. 171.
[48]
Burstein, E. Anomalous optical absorption limit in InSb. Phys. Rev., 1954, 93(3), 632.
[49]
Singh, A.; Vishwakarma, H.L. Studies on structural, morphological and optical properties of cobalt doped ZnO. Inter. J. Mater. Chem. Phys., 2015, 1, 163-173.
[50]
Suchea, M.; Christoulakis, S.; Katharakis, M.; Vidakis, N.; Koudoumas, E. Influence of thickness and growth temperature on the optical and electrical properties of ZnO thin films. Thin Solid Films, 2009, 517, 4303-4306.
[51]
Cheng, Y.; Cao, L.; He, G.; Yao, G.; Song, X.; Sun, Z. Preparation, microstructure and photoelectrical properties of Tantalum-doped zinc oxide transparent conducting films. J. Alloys Compd., 2014, 608, 85-89.
[52]
Hou, S.; Li, C. Aluminum-doped zinc oxide thin film as seeds layer effects on the alignment of zinc oxide nanorods synthesized in the chemical bath deposition. Thin Solid Films, 2016, 605, 37-43.
[53]
Ebrahimifard, R.; Golobostanfard, M.R.; Abdizadeh, H. Sol-gel derived Al and Ga co-doped ZnO thin films: An optoelectronic study. Appl. Surf. Sci., 2014, 290, 252-259.
[54]
Saurdi, I.; Mamat, M.H.; Malek, M.F.; Rusop, M. Preparation of aligned ZnO nanorod arrays on Sn-doped ZnO thin films by sonicated sol-gel immersion fabricated for dye-sensitized solar cell. Adv. Mater. Sci. Eng., 2014, Article ID 636725
[55]
Marselie, J.; Fauzia, V.; Sugihartono, I. The effect of Cu dopant on
morphological, structural and optical properties of ZnO nanorods
grown on indium tin oxide substrate. In: Journal of Physics: Conference
Series,, 2017, 817(1), 012014.
[56]
Zeng, H.; Cai, W.; Hu, J.; Duan, G.; Liu, P.; Li, Y. Violet photoluminescence from shell layer of Zn/ZnO core-shell nanoparticles induced by laser ablation. Appl. Phys. Lett., 2006, 88(17), 171910.
[57]
Das, R.; Kumar, A.; Kumar, Y.; Sen, S.; Shirage, P.M. Effect of growth temperature on the optical properties of ZnO nanostructures grown by simple hydrothermal method. RSC Advances, 2015, 5(74), 60365-60372.
[58]
Das, D.; Mondal, P. Photoluminescence phenomena prevailing in c-axis oriented intrinsic ZnO thin films prepared by RF magnetron sputtering. RSC Advances, 2014, 4(67), 35735-35743.
[59]
Mahmood, K.; Park, S.B.; Sung, H.J. Enhanced photoluminescence, Raman spectra and field-emission behavior of indium-doped ZnO nanostructures. J. Mater. Chem. C., 2013, 1(18), 3138-3149.
[60]
Swapna, K.; Mahamuda, S.; Rao, A.S.; Jayasimhadri, M.; Sasikala, T.; Moorthy, L.R. Optical absorption and luminescence characteristics of Dy3+ doped zinc alumino bismuth borate glasses for lasing materials and white LEDs. J. Lumin., 2013, 139, 119-124.
[61]
Schubert, E.F. Light Emitting Diodes; Cambridge University Press: New York, 2006.