[1]
Rosenberg, B.; Vancamo, L.; Trosko, J.E.; Mansour, V.H. Platinum compounds: A new class of potent antitumour agents. Nature, 1969, 222(5191), 385-386.
[2]
Wiltshaw, E.; Kroner, T.; Phase, I.I. Study of cis-dichlorodiammineplatinum[II] (NSC-119875] in advanced adenocarcinoma of the ovary. Cancer Treat. Rep., 1976, 60(1), 55-60.
[3]
Frezza, M.; Hindo, S.; Chen, D.; Davenport, A.; Schmitt, S.; Tomco, D.; Dou, Q.P. Novel metals and metal complexes as platforms for cancer therapy. Curr. Pharm. Des., 2010, 16(16), 1813-1825.
[4]
Desoize, B.; Madoulet, C. Particular aspects of platinum compounds used at present in cancer treatment. Crit. Rev. Oncol. Hematol., 2002, 42(3), 317-325.
[5]
Fraval, H.N.; Rawlings, C.J.; Roberts, J.J. Increased sensitivity of UV-repair-deficient human cells to DNA bound platinum products which unlike thymine dimers are not recognized by an endonuclease extracted from Micrococcus luteus. Mutat. Res., 1978, 51(1), 121-132.
[6]
Wiernik, P.H.; Yeap, B.; Vogl, S.E.; Kaplan, B.H.; Comis, R.L.; Falkson, G.; Davis, T.E.; Fazzini, E.; Cheuvart, B.; Horton, J. Hexamethylmelamine and low or moderate dose cisplatin with or without pyridoxine for treatment of advanced ovarian carcinoma: A study of the eastern cooperative oncology group. Cancer Invest., 1992, 10(1), 1-9.
[7]
Dasari, S.; Tchounwou, P.B. Cisplatin in cancer therapy: Molecular mechanisms of action. Eur. J. Pharmacol., 2014, 740, 364-378.
[8]
Ivanov, A.I.; Christodoulou, J.; Parkinson, J.A.; Barnham, K.J.; Tucker, A.; Woodrow, J.; Sadler, P.J. Cisplatin binding sites on human albumin. J. Biol. Chem., 1998, 273(24), 14721-14730.
[9]
Lippert, B. Cisplatin: Chemistry and Biochemistry of a Leading Anticancer Drug; Verlag Helvetica Chimica Acta: Zürich, 1999.
[10]
Gately, D.P.; Howell, S.B. Cellular accumulation of the anticancer agent cisplatin: A review. Br. J. Cancer, 1993, 67(6), 1171-1176.
[11]
Ishida, S.; Lee, J.; Thiele, D.J.; Herskowitz, I. Uptake of the anticancer drug cisplatin mediated by the copper transporter Ctr1 in yeast and mammals. Proc. Natl. Acad. Sci., 2002, 99(22), 14298-14302.
[12]
Farrell, N.; Kelland, L.R. Platinum-Based Drugs in Cancer Therapy; Humana Press, 2000.
[13]
Baik, M-H.; Friesner, R.A.; Lippard, S.J. Theoretical study of cisplatin binding to purine bases: Why does cisplatin prefer guanine over adenine? J. Am. Chem. Soc., 2003, 125(46), 14082-14092.
[14]
Takahara, P.M.; Rosenzweig, A.C.; Frederick, C.A.; Lippard, S.J. Crystal structure of double-stranded DNA containing the major adduct of the anticancer drug cisplatin. Nature, 1995, 377(6550), 649-652.
[15]
Sarmah, A.; Roy, R.K. Understanding the preferential binding interaction of aqua-cisplatins with nucleobase guanine over adenine: A density functional reactivity theory based approach. RSC Adv., 2013, 3(8), 2822.
[16]
Fuertes, M.A.; Castilla, J.; Alonso, C.; Pérez, J.M. Novel concepts in the development of platinum antitumor drugs. Curr. Med. Chem. Anticancer Agents, 2002, 2(4), 539-551.
[17]
Zhang, Y.; Guo, Z.; You, X.Z. Hydrolysis theory for cisplatin and its analogues based on density functional studies. J. Am. Chem. Soc., 2001, 123(38), 9378-9387.
[18]
Raber, J.; Zhu, C.; Eriksson, L.A. Activation of anti-cancer drug cisplatin — is the activated complex fully aquated? Mol. Phys., 2004, 102(23-24), 2537-2544.
[19]
Mantri, Y.; Lippard, S.J.; Baik, M-H. Bifunctional binding of cisplatin to DNA: Why does cisplatin form 1,2-intrastrand cross-links with Ag but not with GA? J. Am. Chem. Soc., 2007, 129(16), 5023-5030.
[20]
Zeizinger, M.; Burda, J.V.; Leszczynski, J. The influence of a sugar-phosphate backbone on the cisplatin-bridged BpB? models of DNA purine bases. Quantum chemical calculations of Pt[Ii] bonding characteristics. Phys. Chem. Chem. Phys., 2004, 6(13), 3585.
[21]
Spiegel, K.; Rothlisberger, U.; Carloni, P. Cisplatin binding to DNA oligomers from hybrid car-parrinello/molecular dynamics simulations. J. Phys. Chem. B, 2004, 108(8), 2699-2707.
[22]
Wysokiński, R.; Michalska, D. The performance of different density functional methods in the calculation of molecular structures and vibrational spectra of Platinum[II] antitumor drugs: Cisplatin and carboplatin. J. Comput. Chem., 2001, 22(9), 901-912.
[23]
Chval, Z.; Sip, M. Pentacoordinated transition states of cisplatin hydrolysis—ab initio study. J. Mol. Struct. Theochem, 2000, 532(1-3), 59-68.
[24]
Carloni, P.; Sprik, M.; Andreoni, W. Key steps of the Cis -Platin-DNA interaction: Density functional theory-based molecular dynamics simulations. J. Phys. Chem. B, 2000, 104(4), 823-835.
[25]
Sarmah, A.; Saha, S.; Bagaria, P.; Kinkar Roy, R. On the complementarity of comprehensive decomposition analysis of stabilization energy (CDASE) scheme and supermolecular approach. Chem. Phys., 394(1), 29-35.
[26]
Ayers, P.W.; Parr, R.G. Variational principles for describing chemical reactions. Reactivity indices based on the external potential. J. Am. Chem. Soc., 2001, 123(9), 2007-2017.
[27]
Parr, R.G.; Yang, W. Density-functional theory of the electronic structure of molecules. Annu. Rev. Phys. Chem., 1995, 46(1), 701-728.
[28]
Roy, R.K.; Saha, S. Studies of regioselectivity of large molecular systems using DFT based reactivity descriptors. Annu. Reports Sect. “C. Phys. Chem., 2010, 106, 118.
[29]
Calais, J-L. Density-Functional Theory of Atoms and Molecules. R.G. Parr and W. Yang, Oxford University Press, New York, Oxford, 1989. IX + 333 Pp. Price £45.00. Int. J. Quantum Chem., 1993, 47(1), 101-101.
[30]
Hohenberg, P.; Kohn, W. Inhomogeneous electron gas. Phys. Rev., 1964, 136(3B), B864-B871.
[31]
Parr, R.G.; Szentpály, L.V.; Liu, S. Electrophilicity Index. J. Am. Chem. Soc., 1999, 121(9), 1922-1924.
[32]
Maynard, A.T.; Huang, M.; Rice, W.G.; Covell, D.G. Reactivity of the HIV-1 nucleocapsid protein P7 zinc finger domains from the perspective of density-functional theory. Proc. Natl. Acad. Sci., 1998, 95(20), 11578-11583.
[33]
Parr, R.G.; Chattaraj, P.K. Principle of maximum hardness. J. Am. Chem. Soc., 1991, 113(5), 1854-1855.
[34]
Ayers, P.W.; Anderson, J.S.M.; Rodriguez, J.I.; Jawed, Z. Indices for predicting the quality of leaving groups. Phys. Chem. Chem. Phys., 2005, 7(9), 1918.
[35]
Yang, W.; Parr, R.G. Hardness, softness, and the fukui function in the electronic theory of metals and catalysis (chemical reactivity/density functional theory/local softness/density of states). Chemistry (Easton), 1985, 82, 6723-6726.
[36]
Ghosh, S.K.; Berkowitz, M. A classical fluid-like approach to the density-functional formalism of many-electron systems. J. Chem. Phys., 1985, 83(6), 2976-2983.
[37]
Saha, S.; Roy, R.K. “One-into-Many” model: An approach on DFT based reactivity descriptor to predict the regioselectivity of large systems. J. Phys. Chem. B, 2007, 111(32), 9664-9674.
[38]
Bagaria, P.; Saha, S.; Murru, S.; Kavala, V.; Patel, B.K.; Roy, R.K. A comprehensive decomposition analysis of stabilization energy (CDASE) and its application in locating the rate-determining step of multi-step reactions. Phys. Chem. Chem. Phys., 2009, 11(37), 8306.
[39]
Urzad Rejestracji Produktów Leczniczych. Charakterystyka Produktu Leczniczego UR.DZL.ZLN.4020.02877.2015: Poland; , 2015.
[40]
Smithline, H.A.; Donnino, M.; Greenblatt, D.J. Pharmacokinetics of high-dose oral thiamine hydrochloride in healthy subjects. BMC Clin. Pharmacol., 2012, 12, 4.
[41]
Pietrzak, I. Vitamin disturbances in chronic renal insufficiency. I. Water soluble vitamins. Przegl. Lek., 1995, 52(10), 522-525.
[42]
de Bernardi di Valserra, M.; Germogli, R.; Feletti, F.; Covini, D.; Borgonovo, E. Pharmacokinetics of a sustained release formulation of pyridoxal phosphate of buflomedil after single or repeated oral doses in healthy volunteers. Arzneimittelforschung, 1992, 42(5), 632-636.
[43]
Bode, W.; van den Berg, H. Pyridoxal-5′-phosphate and pyridoxal biokinetics in male wistar rats fed graded levels of vitamin B-6. J. Nutr., 1991, 121(11), 1738-1745.
[44]
Surjana, D.; Halliday, G.M.; Damian, D.L. Role of nicotinamide in DNA damage, mutagenesis, and DNA repair. J. Nucleic Acids, 2010, 2010.
[45]
Farmaceutyczne, P.T. Farmakopea Polska IX; Urząd Rejestracji Produktów Leczniczych, Wyrobów Medycznych i Produktów Biobójczych: Warszawa, 2011.
[46]
Ghosal, A.; Said, H.M. Mechanism and regulation of vitamin B2 (Riboflavin) uptake by mouse and human pancreatic β-cells/islets: Physiological and molecular aspects. Am. J. Physiol. Gastrointest. Liver Physiol., 2012, 303(9), G1052-8.
[47]
Powers, H.J. Riboflavin (Vitamin B-2) and health. Am. J. Clin. Nutr., 2003, 77(6), 1352-1360.
[48]
Koch, W.; Holthausen, M.C. A Chemist’s Guide to Density Functional Theory; Wiley-VCH, 2001.
[49]
Council, N.R. Diet, Nutrition, and Cancer; The National Academies Press: Washington, DC, 1982.
[50]
Kennedy, D.B. Vitamins and the brain: Mechanisms, dose and efficacy—A review. Nutrients, 2016, 8(2), 68.
[51]
Zielińska-Dawidziak, M.; Grajek, K.; Olejnik, A.; Czaczyk, K.; Grajek, W. Transport of high concentration of thiamin, riboflavin and pyridoxine across intestinal epithelial cells Caco-2. J. Nutr. Sci. Vitaminol. (Tokyo), 2008, 54(6), 423-429.
[52]
Vandemark, N.L.; Salisbury, G.W. The concentration of some B vitamins in bull semen. J. Biol. Chem., 1944, 156, 289-291.
[53]
Seifollah, S.; Mousavi, B. Prevention of cisplatin nephrotoxicity. J. Nephropharmacol., 2016, 5(1), 57-60.
[54]
Miller, R.P.; Tadagavadi, R.K.; Ramesh, G.; Reeves, W.B. Mechanisms of cisplatin nephrotoxicity. Toxins (Basel), 2010, 2(11), 2490-2518.
[55]
Stipanuk, M.; Caudill, M. Biochemical; Physiological and Molecular Aspects of Human Nutrition, 2013.
[56]
Winkler, C.; Wirleitner, B.; Schroecksnadel, K.; Schennach, H.; Fuchs, D. Beer down-regulates activated peripheral blood mononuclear cells in vitro. Int. Immunopharmacol., 2006, 6(3), 390-395.
[58]
Bancroft, D.P.; Lepre, C.A.; Lippard, S.J. Platinum-195 NMR kinetic and mechanistic studies of Cis- and Trans-Diamminedichloroplatinum[II] binding to DNA. J. Am. Chem. Soc., 1990, 112(19), 6860-6871.
[59]
Legendre, F.; Bas, V.; Kozelka, J.; Chottard, J-C. A complete kinetic study of GG versus AG Platination suggests that the doubly aquated derivatives of cisplatin are the actual DNA binding species. Chem - A Eur. J., 2000, 6(11), 2002-2010.
[60]
Frisch, M.J.; Trucks, G.W.; Schlegel, H.B.; Scuseria, G.E.; Robb, M.A.; Cheeseman, J.R.; Scalmani, G.; Barone, V.; Mennucci, B.; Petersson, G.A.; Nakatsuji, H.; Caricato, M.; Li, X.; Hratchian, H.P.; Izmaylov, A.F.; Bloino, J.; Zheng, G.; Sonnenberg, J.L.; Hada, M.; Ehara, M.; Toyota, K.; Fukuda, R.; Hasegaw, C.J. Gaussian 09 Citation Gaussian.com.
[61]
Becke, A.D. Density-functional thermochemistry. III. The role of exact exchange. J. Chem. Phys. Addit., 1993, 98(5648)
[62]
Hay, P.J.; Wadt, W.R. Ab initio effective core potentials for molecular calculations. Potentials for the transition metal atoms Sc to Hg. J. Chem. Phys., 1985, 82(1), 270-283.
[63]
Cramer, C.J.; Truhlar, D.G. Implicit solvation models: Equilibria, structure, spectra, and dynamics. Chem. Rev., 1999, 99(8), 2161-2200.
[64]
Marten, B.; Kim, K.; Cortis, C.; Friesner, R.A.; Murphy, R.B.; Ringnalda, M.N.; Sitkoff, D.; Honig, B. New model for calculation of solvation free energies: Correction of self-consistent reaction field continuum dielectric theory for short-range hydrogen-bonding effects. J. Phys. Chem., 1996, 100(28), 11775-11788.
[65]
Barone, V.; Cossi, M.; Tomasi, J. A new definition of cavities for the computation of solvation free energies by the polarizable continuum model. J. Chem. Phys., 1998, 107(8), 3210-3221.
[66]
Nandala, S. Effects of cisplatin analog size on the reaction with DNA bases; Western Kentucky University: USA, 2013.