[1]
Ottonello, G.; Dessì, A.; Neroni, P.; Trudu, M.E.; Manus, D.; Fanos, V. Acute kidney injury in neonatal age. J. Pediatr. Neonat. Individual. Med., 2014, 3, 1-7.
[2]
Marin, T.; DeRossett, B.; Bhatia, J. Urinary biomarkers to predict neonatal acute kidney injury: A review of the science. J. Perinat. Neonatal Nurs., 2018, 32, 266-274.
[3]
Selewski, D.T.; Charlton, J.R.; Jetton, J.G.; Guillet, R.; Mhanna, M.J.; Askenazi, D.J.; Kent, A.L. Neonatal Acute Kidney Injury. Pediatrics, 2015, 136, e463-e473.
[4]
McMahon, G.M.; Waikar, S.S. Biomarkers in Nephrology. Am. J. Kidney Dis., 2013, 62, 165-178.
[5]
Liu, X.; Guan, Y.; Xu, S.; Li, Q.; Sun, Y.; Han, R.; Jiang, C. Early predictors of acute kidney injury: A narrative review. Kidney Blood Press. Res., 2016, 41, 680-700.
[6]
Greenberg, J.H.; Parikh, C.R. Biomarkers for diagnosis and prognosis of AKI in children: One size does not fit all. Clin. J. Am. Soc. Nephrol., 2017, 12, 1551-1557.
[7]
Ostermann, M.; Joannidis, M. Acute kidney injury 2016: Diagnosis and diagnostic workup. Crit. Care, 2016, 20, 299.
[8]
Askenazi, D.J.; Griffin, R.; McGwin, G.; Carlo, W.; Ambalavanan, N. Acute kidney injury is independently associated with mortality in very low birthweight infants: A matched case-control analysis. Pediatr. Nephrol., 2009, 24, 991-997.
[9]
Mehta, R.L.; Kellum, J.A.; Shah, S.V.; Molitoris, B.A.; Ronco, C.; Warnock, D.G. Acute kidney injury network: report of an initiative to improve outcomes in acute kidney injury. Crit. Care, 2007, 11, R31.
[10]
Khwaja, A. KDIGO clinical practice guidelines for acute kidney injury. Nephron Clin. Pract., 2012, 120, c179-c184.
[11]
Jetton, J.G.; Askenazi, D.J. Update on acute kidney injury in the neonate. Curr. Opin. Pediatr., 2012, 24, 191-196.
[12]
Ricci, Z.; Ronco, C. Neonatal RIFLE. Nephrol. Dial. Transplant., 2013, 28, 2211-2214.
[13]
Askenazi, D.; Saeidi, B.; Koralkar, R.; Ambalavanan, N.; Griffin, R.L. Acute changes in fluid status affect the incidence, associative clinical outcomes, and urine biomarker performance inpremature infants with acute kidney injury. Pediatr. Nephrol., 2016, 31, 843-851.
[14]
Abosaif, N.Y.; Tolba, Y.A.; Heap, M.; Russell, J.; El Nahas, A.M. The outcome of acute renal failure in the intensive care unit according to RIFLE: Model application, sensitivity, and predictability. Am. J. Kidney Dis., 2005, 46, 1038-1048.
[15]
Stapleton, F.B.; Jones, D.P.; Green, R.S. Acute renal failure in neonates: incidence, etiology and outcome. Pediatr. Nephrol., 1987, 1, 314-320.
[16]
Hentschel, R.; Lodige, B.; Bulla, M. Renal insufficiency in the neonatal period. Clin. Nephrol., 1996, 46, 54-58.
[17]
Agras, P.I.; Tarcan, A.; Baskin, E.; Cengiz, N.; Gurakan, B.; Saatci, U. Acute renal failure in the neonatal period. Ren. Fail., 2004, 26, 305-309.
[18]
Koralkar, R.; Ambalavanan, N.; Levitan, E.B.; McGwin, G.; Goldstein, S.; Askenazi, D. Acute kidney injury reduces survival in very low-birth-weight infants. Pediatr. Res., 2011, 69, 354-358.
[19]
Gleason, Ch.; Ballard, R. Avery’s Disease of the Newborn, 8th ed; USA: Saunders, 2004, pp. 1689-1690.
[20]
Toth-Heyn, P.; Drukker, A.; Guignard, J.P. The stressed neonatal kidney: From pathophysiology to clinical management of neonatal vasomotor nephropathy. Pediatr. Nephrol., 2000, 14, 227-239.
[21]
Sulemanji, M.; Vakili, K. Neonatal renal physiology. Semin. Pediatr. Surg., 2013, 22, 195-198.
[22]
Burke, M.; Pabbidi, M.R.; Farley, J.; Roman, R.J. Molecular mechanisms of renal blood flow autoregulation. Curr. Vasc. Pharmacol., 2014, 12, 845-858.
[23]
Martin, R.J.; Fanaroff, A.A.; Walsh, M.C. Fanaroff and Martin’s Neonatal-Perinatal Medicine: Diseases of the Fetus and Infant, 9th ed; USA: Elsevier Mosby, 2011, p. 1690.
[24]
Basile, D.P.; Anderson, D.; Sutton, T.A. Pathophysiology of acute kidney injury. Compr. Physiol., 2012, 2, 1303-1353.
[25]
Sancho-Martínez, S.M.; López-Novoa, J.M.; López-Hernández, F.J. Pathophysiological role of different tubular epithelial cell death modes in acute kidney injury. Clin. Kidney J., 2015, 8, 548-559.
[26]
Lopez-Novoa, J.M.; Quiros, Y.; Vicente, L.; Morales, A.I.; Lopez-Hernandez, F.J. New insights into the mechanism of aminoglycoside nephrotoxicity: An integrative point of view. Kidney Int., 2011, 79, 33-45.
[27]
Roszkowska-Blaim, M.; Kisiel, A. Role of biomarkers in the early diagnosis of acute kidney injury in neonates. Postepy Nauk Med., 2013, 16, 138-143.
[28]
Ringer, S.A. Acute renal failure in the neonate. NeoRevievs, 2010, 11, e243.
[29]
Bennett, M.R.; Devarajan, P. Characteristics of an ideal biomarker of kidney diseases.In:Biomarkers of Kidney Disease; Edelstein, Ch., L. Academic Press/Elsevier: Massachusetts. , 2010, pp. 1-24.
[30]
Rehberg, P.B. Studies on kidney function: The rate of filtration and reabsorption in the human kidney. Biochem. J., 1926, 20, 447-460.
[31]
Perrone, R.D.; Madias, N.E.; Levey, A.S. Serum creatinine as an index of renal function: New insights into old concepts. Clin. Chem., 1992, 38, 1933-1953.
[32]
Oberbauer, R. Biomarkers-a potential route for improved diagnosis and management of ongoing renal damage. Transplant. Proc., 2008, 40, S44-S47.
[33]
Hoseini, R.; Otukesh, H.; Rahimzadeh, N.; Hoseini, S. Glomerular function in neonates. Iran. J. Kidney Dis., 2012, 6, 166-172.
[34]
Lolekha, P.H.; Jaruthunyaluck, S.; Srisawasdi, P. Deproteinization of serum: another best approach to eliminate all forms of bilirubin interference on serum creatinine by the kinetic Jaffe reaction. J. Clin. Lab. Anal., 2001, 15, 116-121.
[35]
Perazella, M.A.; Coca, S.G.; Hall, I.E.; Iyanam, U.; Koraishy, M.; Parikh, C.R. Urine microscopy is associated with severity and worsening of acute kidney injury in hospitalized patients. Clin. J. Am. Soc. Nephrol., 2010, 5, 402-408.
[36]
Levey, A.S.; de Jong, P.E.; Coresh, J.; El Nahas, M.; Astor, B.C.; Matsushita, K.; Gansevoort, R.T.; Kasiske, B.L.; Eckardt, K.U. The definition, classification, and prognosis of chronic kidney disease: A KDIGO controversies conference report. Kidney Int., 2011, 80, 17-28.
[37]
Mohammadjafari, H.; Rafiei, A.; Abedi, M.; Aalaee, A.; Abedi, E. The role of urinary TIMP1 and MMP9 levels in predicting vesicoureteral reflux in neonates with antenatal hydronephrosis. Pediatr. Nephrol., 2014, 29, 871-878.
[38]
Vaidya, V.S.; Ferguson, M.A.; Bonventre, J.V. Biomarkers of acute kidney injury. Annu. Rev. Pharmacol. Toxicol., 2008, 48, 463-493.
[39]
Muramatsu, Y.; Tsujie, M.; Kohda, Y.; Pham, B.; Perantoni, A.O.; Zhao, H.; Jo, S.K.; Yuen, P.S.; Craig, L.; Hu, X.; Star, R.A. Early detection of Cysteine Rich Protein 61 (CYR61, CCN1) in urine following renal ischemic reperfusion injury. Kidney Int., 2002, 62, 1601-1610.
[40]
Ochieng, J.; Chaudhuri, G. Cystatin superfamily. J. Health Care Poor Underserved, 2010, 21, 51-70.
[41]
Laterza, O.F.; Price, C.P.; Scott, M.G.; Cystatin, C. An improved estimator of glomerular filtration rate? Clin. Chem., 2002, 48, 699-707.
[42]
Li, Y.; Fu, C.; Zhou, X.; Xiao, Z.; Zhu, X.; Jin, M.; Li, X.; Feng, X. Urine interleukin-18 and cystatin-C as biomarkers of acute kidney injury in critically ill neonates. Pediatr. Nephrol., 2012, 27, 851-860.
[43]
Novo, A.C.; Sadeck Ldos, S.; Okay, T.S.; Leone, C.R. Longitudinal study of cystatin C in healthy term newborns. Clinics (São Paulo), 2011, 66, 217-220.
[44]
Sweetman, D.U.; Onwuneme, C.; Watson, W.R.; O’Neill, A.; Murphy, J.F.; Molloy, E.J. Renal function and novel urinary biomarkers in infants with neonatal encephalopathy. Acta Paediatr., 2016, 105, e513-e519.
[45]
Askenazi, D.J.; Koralkar, R. Patil; Halloran, B.; Ambalavanan, N.; Griffin, R. Acute kidney injury urine biomarkers in very low-birth-weight infants. Clin. J. Am. Soc. Nephrol., 2016, 11, 1527-1535.
[46]
El-Gamasy, M.A. Early predictors of Acute Kidney Injury (AKI) in a sample of Egyptian full term neonates. Med. Clin. Rev., 2017, 3, 12.
[47]
Abdelaal, N.A.; Shalaby, S.A.; Khashana, A.K.; Abdelwahab, A.M. Serum cystatin C as an earlier predictor of acute kidney injury than serum creatinine in preterm neonates with respiratory distress syndrome. Saudi J. Kidney Dis. Transpl., 2017, 28, 1003-1014.
[48]
Song, Y.; Sun, S.; Yu, Y.; Li, G.; Song, J.; Zhang, H.; Yan, C. Diagnostic value of neutrophil gelatinase-associated lipocalin for renal injury in asphyxiated preterm infants. Exp. Ther. Med., 2017, 13, 1245-1248.
[49]
El-Gammacy, T.M.; Shinkar, D.M.; Mohamed, N.R.; Al-Halag, A.R. Serum cystatin C as an early predictor of acute kidney injury in preterm neonates with respiratory distress syndrome. Scand. J. Clin. Lab. Invest., 2018, 22, 1-6.
[50]
Nakamura, T.; Takahashi, T.; Fukui, M.; Ebihara, I.; Osada, S.; Tomino, Y.; Koide, H. Enalapril attenuates increased gene expression of extracellular matrix components in diabetic rats. J. Am. Soc. Nephrol., 1995, 5, 1492-1497.
[51]
Carome, M.A.; Striker, L.J.; Peten, E.P.; Moore, J.; Yang, C.W.; Stetler-Stevenson, W.G.; Striker, G.E. Human glomeruli express TIMP-1 mRNA and TIMP-2 protein and mRNA. Am. J. Physiol., 1993, 264, F923-F929.
[52]
Hörstrup, J.H.; Gehrmann, M.; Schneider, B.; Plöger, A.; Froese, P.; Schirop, T.; Kampf, D.; Frei, U.; Neumann, R.; Eckardt, K.U. Elevation of serum and urine levels of TIMP-1 and tenascin in patients with renal disease. Nephrol. Dial. Transplant., 2002, 17, 1005-1013.
[53]
Stetler-Stevenson, W.G. Tissue inhibitors of metalloproteinases in cell signaling: metalloproteinase-independent biological activities .Sci. Signal., 2008, 8 1, re6.
[54]
Swisshelm, K.; Ryan, K.; Tsuchiya, K.; Sager, R. Enhanced expression of an insulin growth factor-like binding protein (mac25) in senescent human mammary epithelial cells and induced expression with retinoic acid. Proc. Natl. Acad. Sci. USA, 1995, 92, 4472-4476.
[55]
Meersch, M.; Schmidt, C.; Van Aken, H.; Martens, S.; Rossaint, J.; Singbartl, K.; Gorlich, D.; Kellum, J.A.; Zarbock, A. Urinary TIMP-2 and IGFBP7 as early biomarkers of acute kidney injury and renal recovery following cardiac surgery. PLoS One, 2014, 9, e93460.
[56]
Bihorac, A.; Chawla, L.S.; Shaw, A.D.; Al-Khafaji, A.; Davison, D.L.; Demuth, G.E.; Fitzgerald, R.; Gong, M.N.; Graham, D.D.; Gunnerson, K.; Heung, M.; Jortani, S.; Kleerup, E.; Koyner, J.L.; Krell, K.; Letourneau, J.; Lissauer, M.; Miner, J.; Nguyen, H.B.; Ortega, L.M.; Self, W.H.; Sellman, R.; Shi, J.; Straseski, J.; Szalados, J.E.; Wilber, S.T.; Walker, M.G.; Wilson, J.; Wunderink, R.; Zimmerman, J.; Kellum, J.A. Validation of cell-cycle arrest biomarkers for acute kidney injury using clinical adjudication. Am. J. Respir. Crit. Care Med., 2014, 15, 932-939.
[57]
Westhoff, J.H.; Tönshoff, B.; Waldherr, S.; Pöschl, J.; Teufel, U.; Westhoff, T.H.; Fichtner, A. Urinary Tissue Inhibitor of Metalloproteinase-2 (TIMP-2) Insulin-like Growth Factor-Binding Protein 7 (IGFBP7) predicts adverse outcome in pediatric acute kidney injury. PLoS One, 2015, 25, e0143628.
[58]
Kamianowska, M.; Szczepański, M.; Kulikowska, E.E.; Bebko, B.; Wasilewska, A. Do serum and urinary concentrations of kidney injury molecule-1 in healthy newborns depend on birth weight, gestational age or gender? J. Perinatol., 2017, 37, 73-76.
[59]
Ichimura, T.; Bonventre, J.V.; Bailly, V.; Wei, H.; Hession, C.A.; Cate, R.L.; Sanicola, M. Kidney Injury Molecule-1 (KIM-1), a putative epithelial cell adhesion molecule containing a novel immunoglobulin domain, is up-regulated in renal cells after injury. J. Biol. Chem., 1998, 13, 4135-4142.
[60]
Chaturvedi, S.; Farmer, T.; Kapke, G.F. Assay validation for KIM-1: Human urinary renal dysfunction biomarker. Int. J. Biol. Sci., 2009, 5, 128-134.
[61]
Sabbisetti, V.S.; Ito, K.; Wang, C.; Yang, L.; Mefferd, S.C.; Bonventre, J.V. Novel assays for detection of urinary kim-1 in mouse models of kidney injury. Toxicol. Sci., 2013, 131, 13-25.
[62]
Stojanović, V.D.; Barišić, N.A.; Vučković, N.M.; Doronjski, A.D.; Peco Antić, A.E. Urinary kidney injury molecule-1 rapid test predicts acute kidney injury in extremely low-birth-weight neonates. Pediatr. Res., 2015, 78, 430-435.
[63]
Genc, G.; Ozkaya, O.; Avci, B.; Aygun, C.; Kucukoduk, S. Kidney injury molecule-1 as a promising biomarker for acute kidney injury in premature babies. Am. J. Perinatol., 2013, 30, 245-252.
[64]
Cao, X.Y.; Zhang, H.R.; Zhang, W.; Chen, B. Diagnostic values of urinary netrin-1 and kidney injury molecule-1 for acute kidney injury induced by neonatal asphyxia. Zhongguo Dang Dai Er Ke Za Zhi, 2016, 18, 24-28.
[65]
Jansen, D.; Peters, E.; Heemskerk, S.; Koster-Kamphuis, L.; Bouw, M.P.; Roelofs, H.M.; Van Oeveren, W.; Van Heijst, A.F.; Pickkers, P. Tubular injury biomarkers to detect gentamicin-induced acute kidney injury in the neonatal intensive care unit. Am. J. Perinatol., 2016, 33, 180-187.
[66]
Kamianowska, M.; Wasilewska, A.; Szczepański, M.; Kulikowska, E.; Bebko, B.; Koput, A. Health term-born girls had higher levels of urine neutrophil gelatinase-associated lipocalin than boys during the first postnatal days. Acta Paediatr., 2016, 105, 1105-1108.
[67]
Malyszko, J. Biomarkers of acute kidney injury in different clinical settings: a time to change the paradigm? Kidney Blood Press. Res., 2010, 33, 368-382.
[68]
Suchojad, A.; Tarko, A.; Smertka, M.; Majcherczyk, M.; Brzozowska, A.; Wroblewska, J.; Maruniak-Chudek, I. Factors limiting usefulness of serum and urinary NGAL as a marker of acute kidney injury in preterm newborns. Ren. Fail., 2015, 37, 439-445.
[69]
Mårtensson, J.; Xu, S.; Bell, M.; Martling, C.R.; Venge, P. Immunoassays distinguishing between HNL/NGAL released in urine from kidney epithelial cells and neutrophils. Clin. Chim. Acta, 2012, 413, 1661-1667.
[70]
Askenazi, D.J.; Koralkar, R.; Levitan, E.B.; Goldstein, S.L.; Devarajan, P.; Khandrika, S.; Mehta, R.L.; Ambalavanan, N. Baseline values of candidate urine acute kidney injury biomarkers vary by gestational age in premature infants. Pediatr. Res., 2011, 70, 302-306.
[71]
Huynh, T.K.; Parravicini, E.; Lorenz, J.M.; Nemerofsky, S.L.; Sise, M.E.; Bowman, T.M.; Polesana, E.; Barasch, J.M. Reference values of urinary neutrophil gelatinase-associated lipocalin in very low birth weight infants. Pediatr. Res., 2009, 66, 528-532.
[72]
Lavery, A.P.; Anderson, E.; Ma, Q.; Bennett, M.R.; Devarajan, P.; Schibler, K.R. Urinary NGAL in premature infants. Pediatr. Res., 2008, 64, 423-428.
[73]
Krawczeski, C.D.; Woo, J.G.; Wang, Y.; Bennett, M.R.; Ma, Q.; Devarajan, P. Neutrophil gelatinase- associated lipocalin concentrations predict development of acute kidney injury in neonates and children after cardiopulmonary bypass. J. Pediatr., 2011, 158, 1009-1015.
[74]
Parravicini, E.; Nemerofsky, S.L.; Michelson, K.A.; Huynh, T.K.; Sise, M.E.; Bateman, D.A.; Lorenz, J.M.; Barasch, J.M. Urinary neutrophil gelatinase-associated lipocalin is a promising biomarker for late onset culture-positive sepsis in very low birth weight infants. Pediatr. Res., 2010, 67, 636-640.
[75]
Essajee, F.; Were, F.; Admani, B. Urine neutrophil gelatinase-associated lipocalin in asphyxiated neonates: A prospective cohort study. Pediatr. Nephrol., 2015, 30, 1189-1196.
[76]
Pejović, B.; Erić-Marinković, J.; Pejović, M.; Kotur-Stevuljević, J.; Peco-Antić, A. Detection of acute kidney injury in premature asphyxiated neonates by serum Neutrophil Gelatinase-associated Lipocalin (sNGAL)-sensitivity and specificity of a potential new biomarker. Biochem. Med. (Zagreb), 2015, 15, 450-459.
[77]
Abdelhady, S.; Gawad, E.R.A.; Haie, O.M.A.; Mansour, A.I. Usefulness of serum and urinary neutrophil gelatinase - associated lipocalin in detecting acute kidney injury in asphyxiated neonates. Int. J. Med. Health Sci., 2016, 5, 230-236.
[78]
Baumert, M.; Surmiak, P.; Więcek, A.; Walencka, Z. Serum NGAL and copeptin levels as predictors of acute kidney injury in asphyxiated neonates. Clin. Exp. Nephrol., 2017, 21, 658-664.
[79]
Chandrashekar, C.; Venkatkrishnan, A. Clinical utility of serum Neutrophil Gelatinase Associated Lipocalin (NGAL) as an early marker of acute kidney injury in asphyxiated neonates. J. Nepal Paediatr. Soc., 2016, 36, 121.
[80]
Kuribayashi, R.; Suzumura, H.; Sairenchi, T.; Watabe, Y.; Tsuboi, Y.; Imataka, G.; Kurosawa, H.; Arisaka, O. Urinary neutrophil gelatinase-associated lipocalin is an early predictor of acute kidney injury in premature infants. Exp. Ther. Med., 2016, 12, 3706-3710.
[81]
Oncel, M.Y.; Canpolat, F.E.; Arayici, S.; Alyamac, D.E.; Uras, N.; Oguz, S.S. Urinary markers of acute kidney injury in newborns with perinatal asphyxia. Ren. Fail., 2016, 38, 882-888.
[82]
Tanigasalam, V.; Bhat, B.V.; Adhisivam, B.; Sridhar, M.G.; Harichandrakumar, K.T. Predicting severity of acute kidney injury in term neonates with perinatal asphyxia using urinary neutrophil gelatinase associated lipocalin. Indian J. Pediatr., 2016, 83, 1374-1378.
[83]
El Frargy, M.S.; Soliman, N.A. Urinary neutrophil gelatinase associated lipocalin and interleukin-18 as early predictors of kidney injury in neonates. J. Mol. Biomark. Diagn., 2016, 8, 308.
[84]
Hanna, M.; Brophy, P.D.; Giannone, P.J.; Joshi, M.S.; Bauer, J.A.; Ramachandra, R.S. Early urinary biomarkers of acute kidney injury in preterm infants. Pediatr. Res., 2016, 80, 218-223.
[85]
Sellmer, A.; Bech, B.H.; Bjerre, J.V.; Schmidt, M.R.; Hjortdal, V.E.; Esberg, G.; Rittig, S.; Henrikse, T.B. Urinary neutrophil gelatinase-associated lipocalin in the evaluation of patent ductus arteriosus and AKI in very preterm neonates: A cohort study. BMC Pediatr., 2017, 17, 7.
[86]
Wawrocki, S.; Druszczynska, M.; Kowalewicz-Kulbat, M.; Rudnicka, W. Interleukin 18 (IL-18) as a target for immune intervention. Acta Biochim. Pol., 2016, 63, 59-63.
[87]
Leslie, J.A.; Meldrum, K.K. The role of interleukin-18 in renal injury. J. Surg. Res., 2008, 145, 170-175.
[88]
Miklaszewska, M.; Korohodai, P.; Kwinta, P.; Tomasik, T.; Zachwieja, K.; Klich, B.; Tkaczyk, M.; Droźdź, D.; Pietrzyk, J.A. Clinical validity of urinary interleukin 18 and interleukin 6 determinations in preterm newborns. Przegl. Lek., 2015, 72, 589-596.
[89]
Abd El-Salam, M.; Zaher, M.M.; Abd El-Salam Mohamed, R.; Al Shall, L.Y.; A.M., Saleh R.A.M.; Hegazy, A.A. Comparison ofsome urinary biomarkers of acute kidney injury in term new born with and without asphyxia. Clin. Med. Diag., 2014, 4, 23-28.
[90]
Askenazi, D.J.; Montesanti, A.; Hunley, H.; Koralkar, R.; Pawar, P.; Shuaib, F.; Liwo, A.; Devarajan, P.; Ambalavanan, N. Urine biomarkers predict acute kidney injury and mortality in very low birth weight infants. J. Pediatr., 2011, 159, 907-912.
[91]
Safina, A.I.; Daminova, M.A.; Abdullina, G.A. Acute kidney injury in neonatal intensive care: Medicines involved. Int. J. Risk Saf. Med., 2015, 27, S9-S10.
[92]
Kamijo-Ikemori, A.; Sugaya, T.; Obama, A.; Hiroi, J.; Miura, H.; Watanabe, M.; Kumai, T.; Ohtani-Kaneko, R.; Hirata, K.; Kimura, K. Liver-type fatty acid-binding protein attenuates renal injury induced by unilateral ureteral obstruction. Am. J. Pathol., 2006, 169, 1107-1117.
[93]
Kamijo, A.; Sugaya, T.; Hikawa, A.; Yamanouchi, M.; Hirata, Y.; Ishimitsu, T.; Numabe, A.; Takagi, M.; Hayakawa, H.; Tabei, F.; Sugimoto, T.; Mise, N.; Omata, M.; Kimura, K. Urinary liver-type fatty acid binding protein as a useful biomarker in chronic kidney disease. Mol. Cell. Biochem., 2006, 284, 175-182.
[94]
Tsukahara, H.; Sugaya, T.; Hayakawa, K.; Hiraoka, M.; Hata, A.; Mayumi, M. Quantification of L-type fatty acid binding protein in the urine of preterm neonates. Early Hum. Dev., 2005, 81, 643-646.
[95]
Elnady, H.G.; Abdalmoneam, N.; Shady, M.M.A.; Hassanain, M.M.; Ibraheim, R.A.I.; Ragaa, A.R.H. Urinary liver-type fatty acid-binding protein for early detection of acute kidney injury in neonatal sepsis. Med. Res. J., 2014, 13, 21-26.
[96]
Girardi, A.C.C.; Carraro-Lacroix, L.R. Regulation of Na+/H+ exchanger isoform 3 by protein kinase Ain the renal proximal tubule In: Protein Kinases; Da Silva Xavie, G. InTech: Croatia,. , 2012, pp. 321-336.
[97]
Du Cheyron, D.; Daubin, C.; Poggioli, J.; Ramakers, M.; Houillier, P.; Charbonneau, P.; Paillard, M. Urinary measurement of Na+/H+ Exchanger Isoform 3 (NHE3) protein as new marker of tubule injury in critically ill patients with ARF. Am. J. Kidney Dis., 2003, 42, 497-506.
[98]
Miyata, T.; Jadoul, M.; Kurokawa, K.; Van Ypersele de Strihou, C. Beta-2 microglobulin in renal disease. J. Am. Soc. Nephrol., 1998, 9, 1723-1735.
[99]
Chapelsky, M.C.; Nix, D.E.; Cavanaugh, J.C.; Wilton, J.H.; Norman, A.; Schentag, J.J. Renal tubular enzyme effects of clarithromycin in comparison with gentamicin and placebo in volunteers. Drug Saf., 1992, 7, 304-309.
[100]
Dehne, M.G.; Boldt, J.; Heise, D.; Sablotzki, A.; Hempelmann, G. Tamm-Horsfall protein, alpha-1- and beta-2-microglobulin as kidney function markers in heart surgery. Anaesthesist, 1995, 44, 545-551.
[101]
Schaub, S.; Wilkins, J.A.; Antonovici, M.; Krokhin, O.; Weiler, T.; Rush, D.; Nickerson, P. Proteomic-based identification of cleaved urinary beta2-microglobulin as a potential marker for acute tubular injury in renal allografts. Am. J. Transplant., 2005, 5, 729-738.
[102]
Davey, P.G.; Gosling, P. Beta 2-microglobulin instability in pathological urine. Clin. Chem., 1982, 28, 1330-1333.
[103]
Tabel, Y.; Oncül, M.; Elmas, A.T.; Güngör, S. Evaluation of renal functions in preterm infants with respiratory distress syndrome. J. Clin. Lab. Anal., 2014, 28, 310-314.
[104]
Jaconi, S.; Rose, K.; Hughes, G.J.; Saurat, J.H.; Siegenthaler, G. Characterization of two post-translationally processed forms of human serum retinol-binding protein: Altered ratios in chronic renal failure. J. Lipid Res., 1995, 36, 1247-1253.
[105]
Roberts, D.S.; Haycock, G.B.; Dalton, R.N.; Turner, C.; Tomlinson, P.; Stimmler, L.; Scopes, J.W. Prediction of acute renal failure after birth asphyxia. Arch. Dis. Child., 1990, 65, 1021-1028.
[106]
Cataldi, L.; Mussap, M.; Verlato, G.; Plebani, M.; Fanos, V. Neonatal Nephrology Study Group of the Italian Society of Neonatology. Netilmicin effect on urinary Retinol Binding Protein (RBP) and N-acetyl-beta-D-Glucosaminidase (NAG) in preterm newborns with and without anoxia. J. Chemother., 2002, 14, 76-83.
[107]
Wu, Z.J.; Huang, S.M.; Chen, R.; Hu, B.; Chen, Y.; Zhu, Y.P.; Lu, G.J.; Han, Y.K. Value of blood apoH gene expression and urinary NAG and RBP in early diagnosis of renal function damage in neonates. Zhongguo Dang Dai Er Ke Za Zhi, 2009, 11, 649-652.
[108]
Jones, S.E.; Jomary, C. Clusterin. Int. J. Biochem. Cell Biol., 2002, 34, 427-431.
[109]
Guan, Q.; Alnasser, H.A.; Nguan, C.Y.; Du, C. From humans to experimental models: The cytoprotective role of clusterin in the kidney. Med. Surg. Urol., 2014, 3, 134.
[110]
Guo, J.; Guan, Q.; Liu, X.; Wang, H.; Gleave, M.E.; Nguan, C.Y.; Du, C. Relationship of clusterin with renal inflammation and fibrosis after the recovery phase of ischemia-reperfusion injury. BMC Nephrol., 2016, 17, 133.
[111]
Kahles, F.; Findeisen, H.M.; Bruemmer, D. Osteopontin: A novel regulator at the cross roads of inflammation, obesity and diabetes. Mol. Metab., 2014, 3, 384-393.
[112]
Taub, P.R.; Borden, K.C.; Fard, A.; Maisel, A. Role of biomarkers in the diagnosis and prognosis of acute kidney injury in patients with cardiorenal syndrome. Expert Rev. Cardiovasc. Ther., 2012, 10, 657-667.
[113]
Xie, Y.; Sakatsume, M.; Nishi, S.; Narita, I.; Arakawa, M.; Gejyo, F. Expression, roles, receptors, and regulation of osteopontin in the kidney. Kidney Int., 2001, 60, 1645-1657.
[114]
Lorenzen, J.M.; Hafer, C.; Faulhaber-Walter, R.; Kümpers, P.; Kielstein, J.T.; Haller, H.; Fliser, D. Osteopontin predicts survival in critically ill patients with acute kidney injury. Nephrol. Dial. Transplant., 2011, 26, 531-537.
[115]
Abdelmagid, S.M.; Barbe, M.F.; Rico, M.C.; Salihoglu, S.; Arango-Hisijara, I.; Selim, A.H.; Anderson, M.G.; Owen, T.A.; Popoff, S.N.; Safadi, F.F. Osteoactivin, an anabolic factor that regulates osteoblast differentiation and function. Exp. Cell Res., 2008, 314, 2334-2351.
[116]
Ye, M.; Xie, X.; Peng, L.; Tan, L.; Lan, G.; Yu, S. Expression and mechanism of osteoactivin in the kidney of SD rats after acute cyclosporine A toxicity. Zhong Nan Da Xue Xue Bao Yi Xue Ban, 2011, 36, 881-888.
[117]
McMahon, B.A.; Koyner, J.L.; Murray, P.T. Urinary glutathione S-transferases in the pathogenesis and diagnostic evaluation of acute kidney injury following cardiac surgery: A critical review. Curr. Opin. Crit. Care, 2010, 16, 550-555.
[118]
Ali, R.J.; Al-Obaidi, F.H.; Arif, H.S. The role of urinary N-acetyl beta-D-glucosaminidase in children with urological problems. Oman Med. J., 2014, 29, 285-288.
[119]
Fujita, H.; Narita, T.; Morii, T.; Shimotomai, T.; Yoshioka, N.; Kakei, M.; Ito, S. Increased urinary excretion of n-acetylglucos-aminidase in subjects with impaired glucose tolerance. Ren. Fail., 2002, 24, 69-75.
[120]
Dun, X.P.; Parkinson, D.B. Role of netrin-1 signaling in nerve regeneration. Int. J. Mol. Sci., 2017, 18, 491.
[121]
Mehlen, P.; Furne, C. Netrin-1: When a neuronal guidance cue turns out to be a regulator of tumorigenesis. Cell. Mol. Life Sci., 2005, 62, 2599-2616.
[122]
Boneschansker, L.; Nakayama, H.; Eisenga, M.; Wedel, J.; Klagsbrun, M.; Irimia, D.; Briscoe, D.M. Netrin-1 augments chemokinesis in CD4+ T cells in vitro and elicits a proinflammatory response in vivo. J. Immunol., 2016, 197, 1389-1398.
[123]
Prieto, C.P.; Ortiz, M.C.; Villanueva, A.; Villarroel, C.; Edwards, S.S.; Elliott, M.; Lattus, J.; Aedo, S.; Meza, D.; Lois, P.; Palma, V. Netrin-1 acts as a non-canonical angiogenic factor produced by human Wharton’s Jelly Mesenchymal Stem Cells (WJ-MSC). Stem Cell Res. Ther., 2017, 8, 43.
[124]
Wang, W.; Reeves, W.B.; Ramesh, G. Netrin-1 and kidney injury. I. Netrin-1 protects against ischemia-reperfusion injury of the kidney. Am. J. Physiol. Renal Physiol., 2008, 294, F739-F747.
[125]
White, J.J.; Mohamed, R.; Jayakumar, C.; Ramesh, G. Tubular injury marker netrin-1 is elevated early in experimental diabetes. J. Nephrol., 2013, 26, 1055-1064.
[126]
Mussap, M.; Noto, A.; Fravega, M.; Fanos, V. Urine Neutrophil Gelatinase-Associated Lipocalin (uNGAL) and netrin-1: Are they effectively improving the clinical management of sepsis-induced acute kidney injury (AKI)? J. Matern. Fetal Neonatal Med., 2011, 24, 15-17.
[127]
Jayakumar, C.; Nauta, F.L.; Bakker, S.J.; Bilo, H.; Gansevoort, R.T.; Johnson, M.H.; Ramesh, G. Netrin-1, a urinary proximal tubular injury marker, is elevated early in the time course of human diabetes. J. Nephrol., 2014, 27, 151-157.
[128]
Al Morsy, E.A.; Mokhtar, E.R.; Ibrahim, G.E. El- Nasser, A.M; Ebrahem, E.E.; Elattar, S. Urinary metabolomic profiles and netrin-1 as diagnostics and predictors of acute kidney injury in preterm neonates. Am. J. Med. Med. Sci., 2018, 8, 79-90.
[129]
Denecke, B.; Graber, S.; Schafer, C.; Heiss, A.; Woltje, M.; Jahnen-Dechent, W. Tissue distribution and activity testing suggest a similar but not identical function of fetuin-B and fetuin-A. Biochem. J., 2003, 376, 135-145.
[130]
Zhou, H.; Pisitkun, T.; Aponte, A.; Yuen, P.S. Hoffert. J.D.; Yasuda, H.; Hu, X.; Chawla, L.; Shen, R. F.; Knepper, M.A.; Star, R.A. Exosomal fetuin-A identified by proteomics: A novel urinary biomarker for detecting acute kidney injury. Kidney Int., 2006, 70, 1847-1857.
[131]
Cheruvanky, A.; Zhou, H.; Pisitkun, T.; Kopp, J.B.; Knepper, M.A.; Yuen, P.S.; Star, R.A. Rapid isolation of urinary exosomal biomarkers using a nanomembrane ultrafiltration concentrator. Am. J. Physiol. Renal Physiol., 2007, 292, F1657-F1661.
[132]
Yu, Y.; Jin, H.; Holder, D.; Ozer, J.S.; Villarreal, S.; Shughrue, P.; Shi, S.; Figueroa, D.J.; Clouse, H.; Su, M.; Muniappa, N.; Troth, S.P.; Bailey, W.; Seng, J.; Aslamkhan, A.G.; Thudium, D.; Sistare, F.D.; Gerhold, D.L. Urinary biomarkers trefoil factor 3 and albumin enable early detection of kidney tubular injury. Nat. Biotechnol., 2010, 28, 470-477.
[133]
Kinoshita, K.; Taupin, D.R.; Itoh, H.; Podolsky, D.K. Distinct pathways of cell migration and antiapoptotic response to epithelial injury: Structure-function analysis of human intestinal trefoil factor. Mol. Cell. Biol., 2000, 20, 4680-4690.
[134]
Deshmane, S.L.; Kremlev, S.; Amini, S.; Sawaya, B.E. Monocyte Chemoattractant Protein-1 (MCP-1): An overview. J. Interferon Cytokine Res., 2009, 29, 313-326.
[135]
Munshi, R.; Johnson, A.; Siew, E.D.; Ikizler, T.A.; Ware, L.B.; Wurfel, M.M.; Himmelfarb, J.; Zager, R.A. MCP-1 gene activation marks acute kidney injury. J. Am. Soc. Nephrol., 2011, 22, 165-175.
[136]
Su, L.; Xie, L.; Liu, D. Urine sTREM-1 may be a valuable biomarker in diagnosis and prognosis of sepsis-associated acute kidney injury. Crit. Care, 2015, 14, 281.
[137]
Yuan, Z.K.; Fang, F.; Liu, C.J.; Li, J.; Chen, Y.F.; Xu, F. Value of urine soluble triggering receptor expressed on myeloid cells-1 in the early diagnosis of sepsis associated acute kidney injury. Zhonghua Er Ke Za Zhi, 2018, 56, 342-346.
[138]
Wasung, M.E.; Chawla, L.S.; Madero, M. Biomarkers of renal function, which and when? Clin. Chim. Acta, 2015, 438, 350-357.
[139]
McIlroy, D.R.; Wagener, G.; Lee, H.T. Neutrophil gelatinase-associated lipocalin and acute kidney injury after cardiac surgery: The effect of baseline renal function on diagnostic performance. Clin. J. Am. Soc. Nephrol., 2010, 5, 211-219.
[140]
Schmidt-Ott, K.; Mori, K.; Yi, Li. J.; Kalandadze, A.; Cohen, D.J.; Devarajan, P.; Barasch, J. Dual action of neutrophil gelatinase-associatedlipocalin. J. Am. Soc. Nephrol., 2007, 18, 407-413.
[141]
Parikh, C.R.; Mansour, S.G. Perspective on clinical application of biomarkers in AKI. J. Am. Soc. Nephrol., 2017, 28, 1677-1685.
[142]
Malhotra, R.; Siew, E.D. Biomarkers for the early detection and prognosis of acute kidney injury. Clin. J. Am. Soc. Nephrol., 2017, 6, 149-173.
[144]
Zarbock, A.; Kellum, J.A.; Schmidt, C.; Van Aken, H.; Wempe, C.; Pavenstädt, H.; Boanta, A.; Gerß, J.; Meersch, M. Effect of early vs. delayed initiation of renal replacement therapy on mortality in critically ill patients with acute kidney injury: The ELAIN randomized clinical trial. JAMA, 2016, 315, 2190-2199.
[145]
Kępka, A.; Waszkiewicz, N.; Chojnowska, S.; Zalewska-Szajda, B.; Ładny, J.R.; Wasilewska, A.; Zwierz, K.; Szajda, S.D. Utility of urinary biomarkers in kidney transplant function assessment In: Current issues and future direction in kidney transplantation; Rath, T.; InTech: Rijeka,. , 2013, pp. 61-88.
[146]
Dean, P.G.; Park, W.D.; Cornell, L.D.; Gloor, J.M.; Stegall, M.D. Intragraft gene expression in positive crossmatch kidney allografts: ongoing inflammation mediates chronic antibody-mediated injury. Am. J. Transplant., 2012, 12, 1551-1563.
[147]
Scian, M.J.; Maluf, D.G.; David, K.G.; Archer, K.J.; Suh, J.L.; Wolen, A.R.; Mba, M.U.; Massey, H.D.; King, A.L.; Gehr, T.; Cotterell, A.; Posner, M.; Mas, V. MicroRNA profiles in allograft tissues and paired urines associate with chronic allograft dysfunction with IF/TA. Am. J. Transplant., 2011, 11, 2110-2122.
[148]
Srivastava, M.; Eidelman, O.; Torosyan, Y.; Jozwik, C.; Mannon, R.B.; Pollard, H.B. Elevated expression levels of ANXA11, integrins β3 and α3, and TNF-α contribute to a candidate proteomic signature in urine for kidney allograft rejection. Proteomics Clin. Appl., 2011, 5, 311-321.
[149]
Wishart, D.S. Metabolomics in monitoring kidney transplants. Curr. Opin. Nephrol. Hypertens., 2006, 15, 637-642.