[1]
Molnár, A.; Papp, A. The use of polysaccharides and derivatives in palladium-catalyzed coupling reactions. Catal. Sci. Technol., 2014, 4, 295-310.
[2]
Santos, M.R.; Rodrigues, M.V.R.; Santos, A.B.S.; Valerio, M.G.; Martins, G.B.C.; Sucupira, R.R.; Meneghetti, L.; Suarez, P.A.Z. Metal-cellulose catalytic systems for biodiesel preparation and reductive stabilization. J. Mol. Catal. A Chem., 2016, 422, 131-141.
[3]
Dewan, A.; Bharali, P.; Bora, U.; Thakur, A.J. Starch assisted palladium (0) nanoparticles as in situ generated catalysts for room temperature Suzuki–Miyaura reactions in water. RSC Adv., 2016, 6, 11758-11762.
[4]
Keshipour, S.; Kalam Khalteh, N. Oxidation of ethylbenzene to styrene oxide in the presence of cellulose‐supported Pd magnetic nanoparticles. Appl. Organomet. Chem., 2016, 30, 653-656.
[5]
Guibal, E. Interactions of metal ions with chitosan-based sorbents: A review. Sep. Purif. Technol, 2004, 38, 43-74.
[6]
Guibal, E. Heterogeneous catalysis on chitosan-based materials: A review. Prog. Polym. Sci., 2005, 30, 71-109.
[7]
Kadib, A.E.I. Chitosan as a sustainable organocatalyst: A concise overview. ChemSusChem, 2015, 8, 217-244.
[8]
Kyzas, G.Z.; Bikiaris, D.N. Recent modifications of chitosan for adsorption applications: A critical and systematic review. Mar. Drugs, 2015, 13, 312-337.
[9]
Lee, M.; Chen, B.Y.; Den, W. Chitosan as a natural polymer for heterogeneous catalysts support: A short review on its applications. Appl. Sci., 2015, 5, 1272-1283.
[10]
Pestov, A.; Bratskaya, S. Chitosan and its derivatives as highly efficient polymer ligands. Molecules, 2016, 21, 330-364.
[11]
Liu, Y.; Peng, C.; Linyong, S.; Fang, Y. Synthesis of silver nanoparticles by gamma-ray irradiation in acetic water solution containing chitosan. Radiat. Phys. Chem., 2007, 76, 1165-1168.
[12]
Huang, H.; Yang, X. Synthesis of polysaccharide-stabilized gold and silver nanoparticles: A green method. Carbohydr. Res., 2004, 339, 2627-2631.
[13]
Adlim, M.; Bakar, M.A.; Liew, K.Y.; Ismail, J. Synthesis of chitosan-stabilized platinum and palladium nanoparticles and their hydrogenation activity. J. Mol. Catal. A Chem., 2004, 212, 141-149.
[14]
Guibal, E.; Vincent, T. Chitosan-supported palladium catalyst. IV. Influence of temperature on nitrophenol degradation and thermodynamic parameters. J. Environ. Manage., 2004, 71, 15-23.
[16]
Keshipour, S.; Ahmadi, F.; Seyyedi, B. Chitosan-modified Pd (II)-d-penicillamine: Preparation, characterization and catalyst application. Cellulose, 2017, 24, 1455-1462.
[17]
Huang, G.; Cai, C.C.; Luo, J.; Zhou, H.; Guo, Y.A.; Liu, S.Y. Highly selective oxidation of toluene using air over [Fe(III)TPP]Cl supported on chitosan. Can. J. Chem., 2008, 86, 199-204.
[18]
Kumar, S.; Singhal, N.; Singh, R.K.; Gupta, P.; Singh, R.; Jain, S.L. Dual catalysis with magnetic chitosan: direct synthesis of cyclic carbonates from olefins with carbon dioxide using isobutyraldehyde as the sacrificial reductant. Dalton Trans., 2015, 44, 11860-11866.
[19]
Wang, H.; Sun, W.; Xia, C. An easily recoverable and efficient catalyst for heterogeneous cyclopropanation of olefins. J. Mol. Catal. A Chem., 2003, 206, 199-203.
[20]
Peirano, F.; Vincent, T.; Quignard, F.; Robitzer, M.; Guibal, E. Palladium supported on chitosan hollow fiber for nitrotoluene hydrogenation. J. Membr. Sci., 2009, 329, 30-45.
[21]
Zhou, J.; Dong, Z.; Yang, H.; Shi, Z.; Zhou, X.; Li, R. Pd immobilized on magnetic chitosan as a heterogeneous catalyst for acetalization and hydrogenation reactions. Appl. Surf. Sci., 2013, 279, 360-366.
[22]
Hardy, J.J.E.; Hubert, S.; Macquarrie, D.J.; Wilson, A.J. Chitosan-based heterogeneous catalysts for Suzuki and Heck reactions. Green Chem., 2004, 6, 53-56.
[23]
Calò, V.; Nacci, A.; Monopoli, A.; Fornaro, A.; Sabbatini, L.; Cioffi, N.; Ditaranto, N. Heck reaction catalyzed by nanosized palladium on chitosan in ionic liquids. Organometallics, 2004, 23, 5154-5158.
[24]
Yi, S.S.; Lee, D.H.; Sin, E.; Lee, Y.S. Chitosan-supported palladium(0) catalyst for microwave-prompted Suzuki cross-coupling reaction in water. Tetrahedron Lett., 2007, 48, 6771-6775.
[25]
Lv, D.; Zhang, M. O-Carboxymethyl Chitosan supported heterogeneous palladium and Ni catalysts for Heck reaction. Molecules, 2017, 22, 150-159.
[26]
Cotugno, P.; Casiello, M.; Nacci, A.; Mastrorilli, P.; Dell’Anna, M.M.; Monopoli, A. Suzuki coupling of iodo and bromoarenes catalyzed by chitosan-supported Pd-nanoparticles in ionic liquids. J. Organomet. Chem., 2014, 752, 1-5.
[27]
Bradshaw, M.; Zou, J.; Byrne, L.; Iyer, K.S.; Stewart, S.G.; Raston, C.L. Pd(II) conjugated chitosan nanofibre mats for application in Heck cross-coupling reactions. Chem. Commun., 2011, 47, 12292-12294.
[28]
Kaur, P.; Kumar, B.; Kumar, V.; Kumar, R. Chitosan-supported copper as an efficient and recyclable heterogeneous catalyst for A3/decarboxylative A3-coupling reaction. Tetrahedron Lett., 2018, 59, 1986-1991.
[29]
Shen, C.; Xu, J.; Yu, W.; Zhang, P. A highly active and easily recoverable chitosan@copper catalyst for the C–S coupling and its application in the synthesis of zolimidine. Green Chem., 2014, 16, 3007-3012.
[30]
Bodhak, C.; Kundu, A.; Pramanik, A. An efficient and recyclable chitosan supported copper(II) heterogeneous catalyst for C–N cross coupling between aryl halides and aliphatic diamines. Tetrahedron Lett., 2015, 56, 419-424.
[31]
Baran, T.; Sargin, I.; Kaya, M.; Mentes, A. Green heterogeneous Pd(II) catalyst produced from chitosan-cellulose micro beads for green synthesis of biaryls. Carbohydr. Polym., 2016, 152, 181-188.
[32]
Baran, N.Y.; Baran, T.; Menteş, A. Production of novel palladium nanocatalyst stabilized with sustainable chitosan/cellulose composite and its catalytic performance in Suzuki-Miyaura coupling reactions. Carbohydr. Polym., 2018, 181, 596-604.
[33]
Sin, E.; Yi, S.S.; Lee, Y.S. Chitosan-g-mPEG-supported palladium (0) catalyst for Suzuki cross-coupling reaction in water. J. Mol. Catal. A Chem., 2010, 315, 99-104.
[34]
Martina, K.; Leonhardt, S.E.S.; Ondruschka, B.; Curini, M.; Binello, A.; Cravotto, G. In situ cross-linked chitosan Cu(I) or Pd(II) complexes as a versatile, eco-friendly recyclable solid catalyst. J. Mol. Catal. A Chem., 2011, 334, 60-64.
[35]
Zeng, M.; Yuan, X.; Zuo, S.; Qi, C. Novel chitosan-based/montmorillo-nite/palladium hybrid microspheres as heterogeneous catalyst for Sonogashira reactions. RSC Adv., 2015, 5, 37995-38000.
[36]
Jadhav, S.; Kumbhar, A.; Salunkhe, R. Palladium supported on silica–chitosan hybrid material (Pd‐CS@SiO2) for Suzuki–Miyaura and Mizoroki–Heck cross‐coupling reactions. Appl. Organomet. Chem., 2015, 29, 339-345.
[37]
Sarvestani, M.; Azadi, R. Buchwald‐Hartwig amination reaction of aryl halides using heterogeneous catalyst based on Pd nanoparticles decorated on chitosan functionalized graphene oxide. Appl. Organomet. Chem., 2018, 32, e3906.
[38]
Demetgul, C. Synthesis of the ketimine of chitosan and 4,6-diacetylresorcinol, and study of the catalase-like activity of its copper chelate. Carbohydr. Polym., 2012, 89, 354-361.
[39]
Jin, X.; Wang, J.; Bai, J. Synthesis and antimicrobial activity of the Schiff base from chitosan and citral. Carbohydr. Res., 2009, 344, 825-359.
[40]
Wang, Z.; Xu, M.; Shao, L.; Qi, C. Palladium immobilized on chitosan nanofibers cross-linked by glutaraldehyde as an efficient catalyst for the Mizoroki–Heck reaction. Kinet. Catal., 2016, 57, 354-359.
[41]
Baran, T.; Menteş, A. Microwave assisted synthesis of biarlys by CC coupling reactions with a new chitosan supported Pd(II) catalyst. J. Mol. Struct., 2016, 1122, 111-116.
[42]
Baran, T.; Menteş, A. Highly efficient Suzuki cross-coupling reaction of biomaterial supported catalyst derived from glyoxal and chitosan. J. Organomet. Chem., 2016, 803, 30-38.
[43]
Baran, T.; Açıksöz, E.; Menteş, A. Carboxymethyl chitosan Schiff base supported heterogeneous palladium(II) catalysts for Suzuki cross-coupling reaction. J. Mol. Catal. A Chem., 2015, 407, 47-52.
[44]
Baran, T.; Menteş, A. Cationic palladium(II) catalysts on O-carboxymethyl chitosan Schiff base for Suzuki coupling reactions. J. Macromol. Sci. Pure Appl. Chem., 2016, 53, 687-690.
[45]
Baran, T.; Menteş, A. Construction of new biopolymer (chitosan)-based pincer-type Pd(II) complex and its catalytic application in Suzuki cross coupling reactions. J. Mol. Struct., 2017, 1134, 591-598.
[46]
Baran, T.; Açıksöz, E.; Menteş, A. Highly efficient, quick and green synthesis of biarlys with chitosan supported catalyst using microwave irradiation in the absence of solvent. Carbohydr. Polym., 2016, 142, 189-198.
[47]
Baran, T.; Inanan, T.; Menteş, A. Synthesis, characterization, and catalytic activity in Suzuki coupling and catalase-like reactions of new chitosan supported Pd catalyst. Carbohydr. Polym., 2016, 145, 20-29.
[48]
Baran, T. A new chitosan Schiff base supported Pd(II) complex for microwave-assisted synthesis of biaryls compounds. J. Mol. Struct., 2017, 1141, 535-541.
[49]
Baran, T. New chitosan-glyoxal beads supported Pd(II) catalyst: Synthesis, characterization and application in Suzuki coupling reactions. Hacettepe J. Biol. & Chem, 2016, 44, 307-315.
[50]
Makhubela, B.C.E.; Jardine, A.; Smith, G.S. Pd nanosized particles supported on chitosan and 6-deoxy-6-amino chitosan as recyclable catalysts for Suzuki–Miyaura and Heck cross-coupling reactions. Appl. Catal. A., 2011, 393, 231-241.
[51]
Li-xia, W.; Zi-wei, W.; Guo-song, W.; Xiao-dong, L.; Jian-guo, R. Catalytic performance of Chitosan-Schiff base supported Pd/Co bimetallic catalyst for acrylamide with phenyl halide. Polym. Adv. Technol., 2010, 21, 244-249.
[52]
Hajipour, A.R.; Sadeghi, A.R.; Khorsandi, Z. Pd nanoparticles immobilized on magnetic chitosan as a novel reusable catalyst for green Heck and Suzuki cross‐coupling reaction: In water at room temperature. Appl. Organomet. Chem., 2018, 32, e4112.
[53]
Anuradha, Kumari. S.; Layek, S.; Pathak, D.D. Palladium nanoparticles immobilized on a magnetic chitosan-anchored Schiff base: applications in Suzuki–Miyaura and Heck–Mizoroki coupling reactions. New J. Chem., 2017, 41, 5595-5604.
[54]
Fakhri, A.; Naghipour, A. Chitosan-Pd (II) complex-decorated Fe3O4 nanoparticle as the highly effective and magnetically recyclable catalyst for Suzuki and Heck coupling reactions. Comments Inorg. Chem., 2017, 37, 201-218.
[55]
Naghipour, A.; Fakhri, A. Heterogeneous Fe3O4@chitosan-Schiff base Pd nanocatalyst: Fabrication, characterization and application as highly efficient and magnetically-recoverable catalyst for Suzuki–Miyaura and Heck–Mizoroki C–C coupling reactions. Catal. Commun., 2016, 73, 39-45.
[56]
Yang, Y.; Li, G.; Song, Z.; Yang, X.; Liu, P. Synthesis and characterization of chitosan-ferrocenylimine palladacycle and its catalytic performance in Heck reaction. Lett. Org. Chem., 2010, 7, 533-538.
[57]
Movassagh, B.; Rezaei, N. A magnetic porous chitosan-based palladium catalyst: a green, highly efficient and reusable catalyst for Mizoroki–Heck reaction in aqueous media. New J. Chem., 2015, 39, 7988-7997.
[58]
Liu, X.; Chang, S.; Chen, X.; Ge, X.; Qian, C. Efficient Ullmann C-X coupling reaction catalyzed by a recoverable functionalized-chitosan supported copper complex. New J. Chem., 2018, 42, 16013-16020.
[59]
Frindy, S.; Primo, A.; Lahcini, M.; Bousmina, M.; Garcia, H.; El Kadib, A. Pd embedded in chitosan microspheres as tunable soft-materials for Sonogashira cross-coupling in water–ethanol mixture. Green Chem., 2015, 17, 1893-1898.
[60]
Zeng, M.; Qi, C.; Yang, J.; Wang, B.; Zhang, X.M. A highly efficient and stable palladium catalyst entrapped within the cross-linked chitosan membrane for Heck reactions. Ind. Eng. Chem. Res., 2014, 53, 10041-10050.
[61]
Zeng, M.; Zhang, X.; Shao, L.; Qi, C.; Zhang, X.M. Highly porous chitosan microspheres supported palladium catalyst for coupling reactions in organic and aqueous solutions. J. Organomet. Chem., 2012, 704, 29-37.
[62]
Zeng, M.; Zhang, X.; Qi, C.; Zhang, X.M. Microstructure-stability relations studies of porous chitosan microspheres supported palladium catalysts. Int. J. Biol. Macromol., 2012, 51, 730-737.
[63]
Cheng, K.; Zeng, M.; Qi, C. Porous chitosan microspheres supported-palladium catalyst for the C–N cross-coupling of aryl halides with secondary amines. J. Chem. Res., 2013, 37, 99-101.
[64]
Primo, A.; Quignard, F. Chitosan as efficient porous support for dispersion of highly active gold nanoparticles: Design of hybrid catalyst for carbon-carbon bond formation. Chem. Commun., 2010, 46, 5593-5595.
[65]
Frindy, S.; Kadib, A.; Lahcini, M.; Primo, A.; García, H. Copper nanoparticles stabilized in a porous chitosan aerogel as a heterogeneous catalyst for C−S cross‐coupling. ChemCatChem, 2015, 7, 3307-3315.
[66]
Hajipour, A.R.; Boostani, E.; Mohammadsaleh, F. Proline-functionalized chitosan–palladium(II) complex, a novel nanocatalyst for C–C bond formation in water. RSC Adv., 2015, 5, 24742-24748.
[67]
Hajipour, A.R.; Tavangar‐Rizi, A. Methionine‐functionalized chitosan–Pd(0) complex: A novel magnetically separable catalyst for Heck reaction of aryl iodides and aryl bromides at room temperature in water as only solvent. Appl. Organomet. Chem., 2017, 31, e3638.
[68]
Hajipour, A.R. Tavangar‐Rizi, Palladium nanoparticles immobilized on magnetic methionine‐functionalized chitosan: A versatile catalyst for Suzuki and copper‐free Sonogashira reactions of aryl halides at room temperature in water as only solvent. Appl. Organomet. Chem., 2017, 31, e3701.
[69]
Hajipour, A.R.; Hosseini, S.M.; Jajarmi, S. Histidine-functionalized chitosan–Cu(II) complex: a novel and green heterogeneous nanocatalyst for two and three component C–S coupling reactions. New J. Chem., 2017, 41, 7447-7452.
[70]
Veisi, H.; Ghadermazi, M.; Naderi, A. Biguanidine‐functionalized chitosan to immobilize palladium nanoparticles as a novel, efficient and recyclable heterogeneous nanocatalyst for Suzuki–Miyaura coupling reactions. Appl. Organomet. Chem., 2016, 30, 341-345.
[71]
Veisi, H.; Najafi, S.; Hemmati, S. Pd(II)/Pd(0) anchored to magnetic nanoparticles (Fe3O4) modified with biguanidine-chitosan polymer as a novel nanocatalyst for Suzuki-Miyaura coupling reactions. Int. J. Biol. Macromol., 2018, 113, 186-194.
[72]
Hajipour, A.R.; Rezaei, F.; Khorsandi, Z. Pd/Cu-free Heck and Sonogashira cross-coupling reaction by Co nanoparticles immobilized on magnetic chitosan as reusable catalyst. Green Chem., 2017, 19, 1353-1361.
[73]
Affrose, A.; Suresh, P.; Azath, I.A.; Pitchumani, K. Palladium nanoparticles embedded on thiourea-modified chitosan: a green and sustainable heterogeneous catalyst for the Suzuki reaction in water. RSC Adv., 2015, 5, 27533-27539.
[74]
Rafiee, F.; Hosseini, S.A. CNC pincer palladium complex supported on magnetic chitosan as highly efficient and recyclable nanocatalyst in C—C coupling reactions. Appl. Organomet. Chem., 2018, 32, e4519.
[75]
Lasri, J.; Mac Leod, T.C.O.; Pombeiro, A.J.L. Oxadiazoline and ketoimine palladium(II) complexes supported on a chitosan membrane and their catalytic activity for the microwave-assisted Suzuki–Miyaura cross-coupling in water. Appl. Catal. A., 2011, 397, 94-102.