[1]
Milosavljevic, N.; Duranton, C.; Djerbi, N.; Puech, P.H.; Gounon, P.; Lagadic-Gossmann, D.; Dimanche-Boitrel, M.T.; Rauch, C.; Tauc, M.; Counillon, L.; Poet, M. Nongenomic effects of cisplatin: Acute inhibition of mechanosensitive transporters and channels without actin remodeling. Cancer Res., 2010, 70(19), 7514-7522.
[2]
Florea, A-M.; Büsselberg, D. Cisplatin as an anti-tumor drug: Cellular mechanisms of activity, drug resistance and induced side effects. Cancers, 2011, 3(1), 1351-1371.
[3]
Dasari, S.; Tchounwou, P.B. Cisplatin in cancer therapy: Molecular mechanisms of action. Eur. J. Pharmacol., 2014, 740, 364-378.
[4]
Muhammad, N.; Guo, Z. Metal-based anticancer chemotherapeutic agents. Curr. Opin. Chem. Biol., 2014, 19, 144-153.
[5]
Kostova, I. Ruthenium complexes as anticancer agents. Curr. Med. Chem., 2006, 13(9), 1085-1107.
[6]
Levina, A.; Mitra, A.; Lay, P.A. Recent developments in ruthenium anticancer drugs. Metallomics, 2009, 1(6), 458-470.
[7]
Abid, M.; Shamsi, F.; Azam, A. Ruthenium Complexes: An emerging ground to the development of metallopharmaceuticals for cancer therapy. Mini Rev. Med. Chem., 2016, 16(10), 772-786.
[8]
Hartinger, C.G.; Jakupec, M.A.; Zorbas-Seifried, S.; Groessl, M.; Egger, A.; Berger, W.; Zorbas, H.; Dyson, P.J.; Keppler, B.K. KP1019, a new redox-active anticancer agent-preclinical development and results of a clinical phase I study in tumor patients. Chem. Biodivers., 2008, 5(10), 2140-2155.
[9]
Antonarakis, E.S.; Emadi, A. Ruthenium-based chemotherapeutics: Are they ready for prime time? Cancer Chemother. Pharmacol., 2010, 66(1), 1-9.
[10]
Weiss, A.; Berndsen, R.H.; Dubois, M.; Muller, C.; Schibli, R.; Griffioen, A.W.; Dyson, P.J.; Nowak-Sliwinska, P. In vivo anti-tumor activity of the organometallic ruthenium(ii)-arene complex [Ru([small eta]6-p-cymene)Cl2(pta)] (RAPTA-C) in human ovarian and colorectal carcinomas. Chem. Sci., 2014, 5(12), 4742-4748.
[11]
Bergamo, A.; Sava, G. Linking the future of anticancer metal-complexes to the therapy of tumour metastases. Chem. Soc. Rev., 2015, 44(24), 8818-8835.
[12]
Zhao, G.; Lin, H. Metal complexes with aromatic N-containing ligands as potential agents in cancer treatment. Curr. Med. Chem. Anticancer Agents, 2005, 5(2), 137-147.
[13]
Gasser, G.; Ott, I.; Metzler-Nolte, N. Organometallic anticancer compounds. J. Med. Chem., 2011, 54(1), 3-25.
[14]
Yan, Y.K.; Melchart, M.; Habtemariam, A.; Sadler, P.J. Organometallic chemistry, biology and medicine: Ruthenium arene anticancer complexes. Chem. Commun. (Cambridge, England), 2005, 38, 4764-4776.
[15]
Habtemariam, A.; Melchart, M.; Fernández, R.; Parsons, S.; Oswald, I.D.H.; Parkin, A.; Fabbiani, F.P.A.; Davidson, J.E.; Dawson, A.; Aird, R.E.; Jodrell, D.I.; Sadler, P.J. Structure-activity relationships for cytotoxic Ruthenium(II) arene complexes containing N,N-, N,O-, and O,O-chelating ligands. J. Med. Chem., 2006, 49(23), 6858-6868.
[16]
Motswainyana, W.M.; Ajibade, P.A. Anticancer activities of mononuclear Ruthenium(II) coordination complexes. Adv. Chem, 2015, 2015, 21.
[17]
Tomaz, A.I.; Jakusch, T.; Morais, T.S.; Marques, F.; de Almeida, R.F.; Mendes, F.; Enyedy, E.A.; Santos, I.; Pessoa, J.C.; Kiss, T.; Garcia, M.H. [RuII(eta(5)-C(5)H(5))(bipy)(PPh(3))](+), a promising large spectrum antitumour agent: cytotoxic activity and interaction with human serum albumin. J. Inorg. Biochem., 2012, 117, 261-269.
[18]
Corte-Real, L.; Matos, A.P.; Alho, I.; Morais, T.S.; Tomaz, A.I.; Garcia, M.H.; Santos, I.; Bicho, M.P.; Marques, F. Cellular uptake mechanisms of an antitumour ruthenium compound: The endosomal/lysosomal system as a target for anticancer metal-based drugs. Microsc. Microanal., 2013, 19(5), 1122-1130.
[19]
Morais, T.S.; Santos, F.C.; Jorge, T.F.; Corte-Real, L.; Madeira, P.J.; Marques, F.; Robalo, M.P.; Matos, A.; Santos, I.; Garcia, M.H. New water-soluble ruthenium(II) cytotoxic complex: Biological activity and cellular distribution. J. Inorg. Biochem., 2014, 130, 1-14.
[20]
Corte-Real, L.; Mendes, F.; Coimbra, J.; Morais, T.S.; Tomaz, A.I.; Valente, A.; Garcia, M.H.; Santos, I.; Bicho, M.; Marques, F. Anticancer activity of structurally related ruthenium(II) cyclopentadienyl complexes. JBIC, 2014, 19(6), 853-867.
[21]
Morais, T.S.; Valente, A.; Tomaz, A.I.; Marques, F.; Garcia, M.H. Tracking antitumour metallodrugs: Promising agents with the Ru(II)- and Fe(II)-cyclopentadienyl scaffolds. Future Med. Chem., 2016, 8(5), 527-544.
[22]
Chatterjee, S.; Roy, A.; Laskar, A.; Swarnakar, S. Electron microscopy
in the perspective of modern biology: Ultravision and ultradimension. Curr. Microsc. Cont. Adv. Sci. Technol. (A. Méndez-
Vilas, Ed.), 2012, 891, 902.
[23]
Ortega, R.; Deves, G.; Carmona, A. Bio-metals imaging and speciation in cells using proton and synchrotron radiation X-ray microspectroscopy. J. R. Soc. Interface, 2009, 6(5), S649-S658.
[24]
Lopes, J.; Alves, D.; Morais, T.S.; Costa, P.J.; Piedade, M.F.
Marques, F.; Villa de Brito, M.J.; Garcia, H.M. New copper(I) and heteronuclear copper(I)-ruthenium(II) complexes: Synthesis, structural characterization and cytotoxicity. J. Inorg. Chem, 2017, 169, 68-78.
[25]
Silva, F.; Zambre, A.; Campello, M.P.; Gano, L.; Santos, I.; Ferraria, A.M.; Ferreira, M.J.; Singh, A.; Upendran, A.; Paulo, A.; Kannan, R. Interrogating the role of receptor-mediated mechanisms: biological fate of peptide-functionalized radiolabeled gold nanoparticles in tumor mice. Bioconjug. Chem., 2016, 27(4), 1153-1164.
[26]
Wu, X.; Gong, S.; Roy-Burman, P.; Lee, P.; Culig, Z. Current mouse and cell models in prostate cancer research. Endocr. Relat. Cancer, 2013, 20(4), R155-R170.
[27]
Mendes, N.; Tortosa, F.; Valente, A.; Marques, F.; Matos, A.; Morais, T.S.; Tomaz, A.I.; Gartner, F.; Garcia, M.H. In vivo performance of a ruthenium-cyclopentadienyl compound in an orthotopic triple negative breast cancer model. Anticancer. Agents Med. Chem., 2017, 17(1), 126-136.
[28]
Pinheiro, T.; Pallon, J.; Alves, L.C.; Veríssimo, A.; Filipe, P.; Silva, J.N.; Silva, R. The influence of corneocyte structure on the interpretation of permeation profiles of nanoparticles across skin. Nucl. Instrum. Methods Phys. Res. Secti B: Beam Interact. Mater. Atoms, 2007, 260(1), 119-123.
[29]
Verissimo, A.; Alves, L.C.; Filipe, P.; Silva, J.N.; Silva, R.; Ynsa, M.D.; Gontier, E.; Moretto, P.; Pallon, J.; Pinheiro, T. Nuclear microscopy: A tool for imaging elemental distribution and percutaneous absorption in vivo. Microsc. Res. Tech., 2007, 70(4), 302-309.
[30]
Ynsa, M.D.; Minquin, R.; Rajendran, R.; Pinheiro, T.; Watt, F. Consequences of a fat diet in the distribution of minerals within pancreatic tissues of rats and rabbits. Microsc. Microanal., 2012, 18(5), 1060-1066.
[31]
Pinheiro, T.; Silva, R.; Fleming, R.; Goncalves, A.; Barreiros, M.A.; Silva, J.N.; Morliere, P.; Santus, R.; Filipe, P. Distribution and quantitation of skin iron in primary haemochromatosis: Correlation with total body iron stores in patients undergoing phlebotomy. Acta Derm. Venereol., 2014, 94(1), 14-19.
[32]
Grime, G.W. The “Q factor” method: Quantitative microPIXE analysis using RBS normalisation. Nucl. Instrum. Methods Phys. Res. Secti B: Beam Interact. Mater. Atoms, 1996, 109-110, 170-174.
[33]
Stacklies, W.; Redestig, H.; Scholz, M.; Walther, D.; Selbig, J. pcaMethods--a bioconductor package providing PCA methods for incomplete data. Bioinformatics (Oxford, England), 2007, 23(9), 1164-1167.
[34]
Redza-Dutordoir, M.; Averill-Bates, D.A. Activation of apoptosis signalling pathways by reactive oxygen species. Biochim. Biophys. Acta, 2016, 1863(12), 2977-2992.
[35]
MacKenzie, S.H.; Clark, A.C. Targeting cell death in tumors by activating caspases. Curr. Cancer Drug Targets, 2008, 8(2), 98-109.
[36]
Park, S.I.; Kim, S.J.; McCauley, L.K.; Gallick, G.E. Pre-clinical
mouse models of human prostate cancer and their utility in drug
discovery. Curr. Protocols Pharmacol, 2010, 14, Unit 14.15.
[37]
Fisher, D.M.; Fenton, R.R.; Aldrich-Wright, J.R. In vivo studies of a platinum(ii) metallointercalator. Chem. Commun., 2008, 43, 5613-5615.
[38]
Ivanov, A.I.; Christodoulou, J.; Parkinson, J.A.; Barnham, K.J.; Tucker, A.; Woodrow, J.; Sadler, P.J. Cisplatin binding sites on human albumin. J. Biol. Chem., 1998, 273(24), 14721-14730.
[39]
Ferraro, G.; Massai, L.; Messori, L.; Merlino, A. Cisplatin binding to human serum albumin: A structural study. Chem. Commun. (Cambridge, England), 2015, 51(46), 9436-9439.
[40]
Itoh, K. 99mTc-MAG3: Review of pharmacokinetics, clinical application to renal diseases and quantification of renal function. Ann. Nucl. Med., 2001, 15(3), 179-190.
[41]
Kim, S.K.; Demetri, G.D. Chemotherapy and neutropenia. Hematol. Oncol. Clin., 1996, 10(2), 377-395.
[42]
Hagerling, C.; Werb, Z. Neutrophils: Critical components in experimental animal models of cancer. Semin. Immunol., 2016, 28(2), 197-204.
[43]
Coffelt, S.B.; Wellenstein, M.D.; de Visser, K.E. Neutrophils in cancer: Neutral no more. Nat. Rev. Cancer, 2016, 16(7), 431-446.
[44]
Muscella, A.; Vetrugno, C.; Migoni, D.; Biagioni, F.; Fanizzi, F.P.; Fornai, F.; De Pascali, S.A.; Marsigliante, S. Antitumour activity of [Pt(O,O′-acac)(γ-acac)(DMS)] in mouse xenograft model of breast cancer. Cell Death Dis., 2014, 5(1)e1014
[45]
Miller, R.P.; Tadagavadi, R.K.; Ramesh, G.; Reeves, W.B. Mechanisms of cisplatin nephrotoxicity. Toxins, 2010, 2(11), 2490-2518.
[46]
Fisher, K.; Vuppalanchi, R.; Saxena, R. Drug-induced liver injury. Arch. Pathol. Lab. Med., 2015, 139(7), 876-887.
[47]
Ganz, T.; Nemeth, E. Hepcidin and iron homeostasis. Biochim. Biophys. Acta, 2012, 1823(9), 1434-1443.
[48]
Wang, Y.; Juan, L.V.; Ma, X.; Wang, D.; Ma, H.; Chang, Y.; Nie, G.; Jia, L.; Duan, X.; Liang, X.J. Specific hemosiderin deposition in spleen induced by a low dose of cisplatin: Altered iron metabolism and its implication as an acute hemosiderin formation model. Curr. Drug Metab., 2010, 11(6), 507-515.
[49]
Liu, N.; Deng, Y.; Pan, J.; Wu, Y.; Zhou, C. Effects of cisplatin on
element distribution in mouse kidney tissue assayed by multivariate
statistical analysis. Int. J. PIXE, 1996, 06(01n02), 409-414.
[50]
Chandra, S. Quantitative imaging of chemical composition in single cells by secondary ion mass spectrometry: Cisplatin affects calcium stores in renal epithelial cells. Methods Mol. Biol (Clifton, N.J.), 2010, 656, 113-130.
[51]
Eljack, N.D.; Ma, H.Y.; Drucker, J.; Shen, C.; Hambley, T.W.; New, E.J.; Friedrich, T.; Clarke, R.J. Mechanisms of cell uptake and toxicity of the anticancer drug cisplatin. Metallom.: Integrated Biometal Sci., 2014, 6(11), 2126-2133.
[52]
Davis, K.J.; Carrall, J.A.; Lai, B.; Aldrich-Wright, J.R.; Ralph, S.F.; Dillon, C.T. Does cytotoxicity of metallointercalators correlate with cellular uptake or DNA affinity? Dalton Trans., 2012, 41(31), 9417-9426.
[53]
Mandal, A.; Viswanathan, C. Natural killer cells: In health and disease. Hematol. Oncol. Stem Cell Ther., 2015, 8(2), 47-55.
[54]
Zarjou, A.; Bolisetty, S.; Joseph, R.; Traylor, A.; Apostolov, E.O.; Arosio, P.; Balla, J.; Verlander, J.; Darshan, D.; Kuhn, L.C.; Agarwal, A. Proximal tubule H-ferritin mediates iron trafficking in acute kidney injury. J. Clin. Invest., 2013, 123(10), 4423-4434.
[55]
Oh, G-S.; Kim, H-J.; Shen, A.; Lee, S.B.; Khadka, D.; Pandit, A.; So, H-S. Cisplatin-induced kidney dysfunction and perspectives on improving treatment strategies. Electrolytes Blood Press. E & BP, 2014, 12(2), 55-65.