[1]
Losos, J.B. Convergence, adaptation, and constraint. Evolution, 2011, 65(7), 1827-1840.
[2]
Rosenblum, E.B.; Parent, C.E.; Brandt, E.E. The molecular basis of phenotypic convergence. Annu. Rev. Ecol. Evol. Syst., 2014, 45(1), 203-226.
[3]
Bridgham, J.T. Predicting the basis of convergent evolution. Science, 2016, 354(6310), 289-289.
[4]
Emery, N.J.; Clayton, N.S. The mentality of crows: Convergent evolution of intelligence in corvids and apes. Science, 2004, 306(5703), 1903-1907.
[5]
Dalziel, A.C.; Laporte, M.; Rougeux, C.; Guderley, H.; Bernatchez, L. Convergence in organ size but not energy metabolism enzyme activities among wild lake whitefish (Coregonus clupeaformis) species pairs. Mol. Ecol., 2017, 26(1), 225-244.
[6]
Mitterboeck, T.F.; Liu, S.; Adamowicz, S.J.; Fu, J.; Zhang, R.; Song, W.; Meusemann, K.; Zhou, X. Positive and relaxed selection associated with flight evolution and loss in insect transcriptomes. Gigascience, 2017, 6(10), 1-14.
[8]
Liu, Y.; Cotton, J.A.; Shen, B.; Han, X.; Rossiter, S.J.; Zhang, S. Convergent sequence evolution between echolocating bats and dolphins. Curr. Biol., 2010, 20(2), 53-54.
[9]
Liu, Y.; Rossiter, S.J.; Han, X.Q.; Cotton, J.A.; Zhang, S.Y. Cetaceans on a molecular fast track to ultrasonic hearing. Curr. Biol., 2010, 20(20), 1834-1839.
[10]
Rossiter, S.J.; Zhang, S.; Liu, Y. Prestin and high frequency hearing in mammals. Commun. Integr. Biol., 2011, 4(2), 236-239.
[11]
Liu, Z.; Qi, F.Y.; Zhou, X.; Ren, H.Q.; Shi, P. Parallel sites implicate functional convergence of the hearing gene Prestin among echolocating mammals. Mol. Biol. Evol., 2014, 31(9), 2415-2424.
[12]
Montealegre, Z.F.; Jonsson, T.; Robson-Brown, K.A.; Postles, M.; Robert, D. Convergent evolution between insect and mammalian audition. Science, 2012, 338(6109), 968-971.
[13]
Yokoyama, S.; Radlwimmer, F.B. The molecular genetics and evolution of red and green color vision in vertebrates. Genetics, 2001, 158(4), 1697-1710.
[14]
Christin, P.A.; Samaritani, E.; Petitpierre, B.; Salamin, N.; Besnard, G. Evolutionary insights on C4 photosynthetic subtypes in grasses from genomics and phylogenetics. Genome Biol. Evol., 2009, 1(0), 221-230.
[15]
Zhang, Z.; Xu, D.; Wang, L.; Hao, J.; Wang, J.; Zhou, X.; Wang, W.; Qiu, Q.; Huang, X.; Zhou, J.; Long, R.; Zhao, F.; Shi, P. Convergent evolution of rumen microbiomes in high-altitude mammals. Curr. Biol., 2016, 26(14), 1873-1879.
[16]
Christin, P.A.; Weinreich, D.M.; Besnard, G. Causes and evolutionary significance of genetic convergence. Trends Genet., 2010, 26(9), 400-405.
[17]
Tenaillon, O.; Rodríguez-Verdugo, A.; Gaut, R.L.; McDonald, P.; Bennett, A.F.; Long, A.D.; Gaut, B.S. The molecular diversity of adaptive convergence. Science, 2012, 335(6067), 457-461.
[18]
Schwarze, K.; Campbell, K.L.; Hankeln, T.; Storz, J.F.; Hoffmann, F.G.; Burmester, T. The globin gene repertoire of lampreys: Convergent evolution of hemoglobin and myoglobin in jawed and jawless vertebrates. Mol. Biol. Evol., 2014, 31(10), 2708-2721.
[20]
Zhang, J.Z. Parallel adaptive origins of digestive RNases in Asian and African leaf monkeys. Nat. Genet., 2006, 38(7), 819-823.
[21]
Castoe, T.A.; de Koning, A.P.J.; Kim, H.M.; Gu, W.; Noonan, B.P.; Naylor, G.; Jiang, Z.J.; Parkinson, C.L.; Pollock, D.D. Evidence for an ancient adaptive episode of convergent molecular evolution. Proc. Natl. Acad. Sci. USA, 2009, 106(22), 8986-8991.
[22]
Parker, J.; Tsagkogeorga, G.; Cotton, J.A.; Liu, Y.; Provero, P.; Stupka, E.; Rossiter, S.J. Genome-wide signatures of convergent evolution in echolocating mammals. Nature, 2013, 502(7470), 228-231.
[23]
Zou, Z.; Zhang, J. No genome-wide protein sequence convergence for echolocation. Mol. Biol. Evol., 2015, 32(5), 1237-1241.
[24]
Thomas, G.W.C.; Hahn, M.W. Determining the null model for detecting adaptive convergence from genomic data: A case study using echolocating mammals. Mol. Biol. Evol., 2015, 32(5), 1232-1236.
[25]
Zhang, G.; Li, C.; Li, Q.; Li, B.; Larkin, D.M.; Lee, C.; Storz, J.F.; Antunes, A.; Greenwold, M.J.; Meredith, R.W. Comparative genomics reveals insights into avian genome evolution and adaptation. Science, 2014, 346(6215), 1311-1320.
[26]
Zou, Z.; Zhang, J. Are convergent and parallel amino acid substitutions in protein evolution more prevalent than neutral expectations? Mol. Biol. Evol., 2015, 32(8), 2085-2096.
[27]
Xu, S.; He, Z.; Guo, Z.; Zhang, Z.; Wyckoff, G.J.; Greenberg, A.; Wu, C-I.; Shi, S. Genome-wide convergence during evolution of mangroves from woody plants. Mol. Biol. Evol., 2017, 34(4), 1008-1015.
[28]
Foote, A.D.; Liu, Y.; Thomas, G.W.C.; Vinař, T.; Alföldi, J.; Deng, J.; Dugan, S.; van Elk, C.E.; Hunter, M.E.; Joshi, V.; Khan, Z.; Kovar, C.; Lee, S.L.; Lindblad-Toh, K.; Mancia, A.; Nielsen, R.; Qin, X.; Qu, J.; Raney, B.J.; Vijay, N.; Wolf, J.B.W.; Hahn, M.W.; Muzny, D.M.; Worley, K.C.; Gilbert, M.T.P.; Gibbs, R.A. Convergent evolution of the genomes of marine mammals. Nat. Genet., 2015, 47(3), 272-275.
[29]
Hu, Y.; Wu, Q.; Ma, S.; Ma, T.; Shan, L.; Wang, X.; Nie, Y.; Ning, Z.; Yan, L.; Xiu, Y.; Wei, F. Comparative genomics reveals convergent evolution between the bamboo-eating giant and red pandas. Proc. Natl. Acad. Sci. USA, 2017, 114(5), 1081-1086.
[30]
Fukushima, K.; Fang, X.; Alvarez-Ponce, D.; Cai, H.; Carretero-Paulet, L.; Chen, C.; Chang, T.-H.; Farr, K.M.; Fujita, T.; Hiwatashi, Y.; Hoshi, Y.; Imai, T.; Kasahara, M.; Librado, P.; Mao, L.; Mori, H.; Nishiyama, T.; Nozawa, M.; Pálfalvi, G.; Pollard, S.T.; Rozas, J.; Sánchez-Gracia, A.; Sankoff, D.; Shibata, T.F.; Shigenobu, S.; Sumikawa, N.; Uzawa, T.; Xie, M.; Zheng, C.; Pollock, D.D.; Albert, V.A.; Li, S.; Hasebe, M. Genome of the pitcher plant Cephalotus reveals genetic changes associated with carnivory. Nat. Ecol. Evol., 2017, 1(3), 00-59.
[31]
Yu, L.; Wang, G.D.; Ruan, J.; Chen, Y.B.; Yang, C.P.; Cao, X.; Wu, H.; Liu, Y.H.; Du, Z.L.; Wang, X.P.; Yang, J.; Cheng, S.C.; Zhong, L.; Wang, L.; Wang, X.; Hu, J.Y.; Fang, L.; Bai, B.; Wang, K.L.; Yuan, N.; Wu, S.F.; Li, B.G.; Zhang, J.G.; Yang, Y.Q.; Zhang, C.L.; Long, Y.C.; Li, H.S.; Yang, J.Y.; Irwin, D.M.; Ryder, O.A.; Li, Y.; Wu, C.I.; Zhang, Y.P. Genomic analysis of snub-nosed monkeys (Rhinopithecus) identifies genes and processes related to high-altitude adaptation. Nat. Genet., 2016, 48(8), 947-952.
[34]
Scotland, R.W. What is parallelism? Evol. Dev., 2011, 13(2), 214-227.
[35]
Stern, D.L. The genetic causes of convergent evolution. Nat. Rev. Genet., 2013, 14(11), 751-764.
[36]
Projecto-Garcia, J.; Natarajan, C.; Moriyama, H.; Weber, R.E.; Fago, A.; Cheviron, Z.A.; Dudley, R.; McGuire, J.A.; Witt, C.C.; Storz, J.F. Repeated elevational transitions in hemoglobin function during the evolution of Andean hummingbirds. Proc. Natl. Acad. Sci. USA, 2013, 110(51), 20669-20674.
[37]
Zhu, X.; Guan, Y.; Signore, A.V.; Natarajan, C.; DuBay, S.G.; Cheng, Y.; Han, N.; Song, G.; Qu, Y.; Moriyama, H.; Hoffmann, F.G.; Fago, A.; Lei, F.; Storz, J.F. Divergent and parallel routes of biochemical adaptation in high-altitude passerine birds from the Qinghai-Tibet Plateau. Proc. Natl. Acad. Sci. USA, 2018, 115(8), 1865-1870.
[38]
Zhen, Y.; Aardema, M.L.; Medina, E.M.; Schumer, M.; Andolfatto, P. Parallel molecular evolution in an herbivore community. Science, 2012, 337(6102), 1634.
[39]
Natarajan, C.; Hoffmann, F.G.; Weber, R.E.; Fago, A.; Witt, C.C.; Storz, J.F. Predictable convergence in hemoglobin function has unpredictable molecular underpinnings. Science, 2016, 354(6310), 336-339.
[40]
McCracken, K.G.; Barger, C.P.; Sorenson, M.D. Phylogenetic and structural analysis of the HbA (alphaA/betaA) and HbD (alphaD/betaA) hemoglobin genes in two high-altitude waterfowl from the Himalayas and the Andes: bar-headed goose (Anser indicus) and Andean goose (Chloephaga melanoptera). Mol. Phylogenet. Evol., 2010, 56(2), 649-658.
[41]
Begun, D.J.; Natarajan, C.; Projecto-Garcia, J.; Moriyama, H.; Weber, R.E.; Muñoz-Fuentes, V.; Green, A.J.; Kopuchian, C.; Tubaro, P.L.; Alza, L.; Bulgarella, M.; Smith, M.M.; Wilson, R.E.; Fago, A.; McCracken, K.G.; Storz, J.F. Convergent evolution of hemoglobin function in high-altitude Andean waterfowl involves limited parallelism at the molecular sequence level. PLoS Genet., 2015, 11(12), e1005681.
[43]
Chikina, M.; Robinson, J.D.; Clark, N.L. Hundreds of genes experienced convergent shifts in selective pressure in marine mammals. Mol. Biol. Evol., 2016, 33(9), 2182-2192.
[44]
Castiglione, G.M.; Schott, R.K.; Hauser, F.E.; Chang, B.S.W. Convergent selection pressures drive the evolution of rhodopsin kinetics at high altitudes via nonparallel mechanisms. Evolution, 2018, 72(1), 170-186.
[45]
Stern, D.L. Perspective: evolutionary developmental biology and the problem of variation. Evolution, 2000, 54(4), 1079-1091.
[46]
Vavouri, T.; Walter, K.; Gilks, W.R.; Lehner, B.; Elgar, G. Parallel evolution of conserved non-coding elements that target a common set of developmental regulatory genes from worms to humans. Genome Biol., 2007, 8(2), 15.
[47]
Frankel, N.; Wang, S.; Stern, D.L. Conserved regulatory architecture underlies parallel genetic changes and convergent phenotypic evolution. Proc. Natl. Acad. Sci. USA, 2012, 109(51), 20975-20979.
[48]
Reed, R.D.; Papa, R.; Martin, A.; Hines, H.M.; Counterman, B.A.; Pardo-Diaz, C.; Jiggins, C.D.; Chamberlain, N.L.; Kronforst, M.R.; Chen, R.; Halder, G.; Nijhout, H.F.; McMillan, W.O. Optix drives the repeated convergent evolution of butterfly wing pattern mimicry. Science, 2011, 333(6046), 1137-1141.
[49]
Signor, S.A.; Liu, Y.; Rebeiz, M.; Kopp, A. Genetic convergence in the evolution of male-specific color patterns in Drosophila. Curr. Biol., 2016, 26(18), 2423-2433.
[50]
Feigin, C.Y.; Newton, A.H.; Doronina, L.; Schmitz, J.; Hipsley, C.A.; Mitchell, K.J.; Gower, G.; Llamas, B.; Soubrier, J.; Heider, T.N.; Menzies, B.R.; Cooper, A.; O’Neill, R.J.; Pask, A.J. Genome of the Tasmanian tiger provides insights into the evolution and demography of an extinct marsupial carnivore. Nat. Ecol. Evol., 2017, 2(1), 182-192.
[54]
Denoeud, F.; Carretero-Paulet, L.; Dereeper, A.; Droc, G.; Guyot, R.; Pietrella, M.; Zheng, C.; Alberti, A.; Anthony, F.; Aprea, G. The coffee genome provides insight into the convergent evolution of caffeine biosynthesis. Science, 2014, 345(6201), 1181-1184.
[55]
Berens, A.J.; Hunt, J.H.; Toth, A.L. Comparative transcriptomics of convergent evolution: Different genes but conserved pathways underlie caste phenotypes across lineages of eusocial insects. Mol. Biol. Evol., 2015, 32(3), 690-703.
[56]
Roda, F.; Liu, H.; Wilkinson, M.J.; Walter, G.M.; James, M.E.; Bernal, D.M.; Melo, M.C.; Lowe, A.; Rieseberg, L.H.; Prentis, P.; Ortiz-Barrientos, D. Convergence and divergence during the adaptation to similar environments by an Australian groundsel. Evolution, 2013, 67(9), 2515-2529.
[57]
Sun, Y.B.; Fu, T.T.; Jin, J.Q.; Murphy, R.W.; Hillis, D.M.; Zhang, Y.P.; Che, J. Species groups distributed across elevational gradients reveal convergent and continuous genetic adaptation to high elevations. Proc. Natl. Acad. Sci. USA, 2018, 115(45), 10634-10641.
[58]
Bickler, P.E.; Buck, L.T. Hypoxia tolerance in reptiles, amphibians, and fishes: life with variable oxygen availability. . Annu. Rev. Physiol., 2007, 69(1), 145-170.
[59]
Ramirez, J.M.; Folkow, L.P.; Blix, A.S. Hypoxia tolerance in mammals and birds: From the wilderness to the clinic. Annu. Rev. Physiol., 2007, 69(1), 113-143.
[60]
Moore, L.G.; Niermeyer, S.; Zamudio, S. Human adaptation to high altitude: Regional and life-cycle perspectives. Yearb. Phys. Anthropol., 1998(Suppl. 27), 25-64.
[61]
Zhang, Q.; Gou, W.; Wang, X.; Zhang, Y.; Ma, J.; Zhang, H.; Zhang, Y.; Zhang, H. Genome resequencing identifies unique adaptations of tibetan chickens to hypoxia and high-dose ultraviolet radiation in high-altitude environments. Genome Biol. Evol., 2016, 8(3), 765-776.
[62]
Beall, C.M.; Jablonski, N.G.; Steegmann, A.T. Human adaptation to climate: Temperature, ultraviolet radiation, and altitude. In: Human biology: An evolutionary and biocultural perspective, 2nd ed; John Wiley & Sons, Inc.: New York, 2012; Vol. 6, pp. 177-250.
[63]
Gnerre, S.; MacCallum, I.; Przybylski, D.; Ribeiro, F.J.; Burton, J.N.; Walker, B.J.; Sharpe, T.; Hall, G.; Shea, T.P.; Sykes, S.; Berlin, A.M.; Aird, D.; Costello, M.; Daza, R.; Williams, L.; Nicol, R.; Gnirke, A.; Nusbaum, C.; Lander, E.S.; Jaffe, D.B. High-quality draft assemblies of mammalian genomes from massively parallel sequence data. Proc. Natl. Acad. Sci. USA, 2011, 108(4), 1513-1518.
[64]
Luo, R.B.; Liu, B.H.; Xie, Y.L.; Li, Z.Y.; Huang, W.H.; Yuan, J.Y.; He, G.Z.; Chen, Y.X.; Pan, Q.; Liu, Y.J.; Tang, J.B.; Wu, G.X.; Zhang, H.; Shi, Y.J.; Liu, Y.; Yu, C.; Wang, B.; Lu, Y.; Han, C.L.; Cheung, D.W.; Yiu, S.M.; Peng, S.L.; Zhu, X.Q.; Liu, G.M.; Liao, X.K.; Li, Y.R.; Yang, H.M.; Wang, J.; Lam, T.W.; Wang, J. SOAPdenovo2: An empirically improved memory-efficient short-read de novo assembler. Gigascience, 2012, 1(1), 18.
[65]
Haas, B.J.; Papanicolaou, A.; Yassour, M.; Grabherr, M.; Blood, P.D.; Bowden, J.; Couger, M.B.; Eccles, D.; Li, B.; Lieber, M.; MacManes, M.D.; Ott, M.; Orvis, J.; Pochet, N.; Strozzi, F.; Weeks, N.; Westerman, R.; William, T.; Dewey, C.N.; Henschel, R.; LeDuc, R.D.; Friedman, N.; Regev, A. De novo transcript sequence reconstruction from RNA-seq using the Trinity platform for reference generation and analysis. Nat. Protoc., 2013, 8(8), 1494-1512.
[66]
Schulz, M.H.; Zerbino, D.R.; Vingron, M.; Birney, E. Oases: robust de novo RNA-seq assembly across the dynamic range of expression levels. Bioinformatics, 2012, 28(8), 1086-1092.
[67]
Li, L.; Stoeckert, C.J.; Roos, D.S. OrthoMCL: Identification of ortholog groups for eukaryotic genomes. Genome Res., 2003, 13(9), 2178-2189.
[68]
Lechner, M.; Findeiß, S.; Steiner, L.; Marz, M.; Stadler, P.F.; Prohaska, S.J. Proteinortho: Detection of (co-) orthologs in large-scale analysis. BMC Bioinformatics, 2011, 12(1), 1.
[69]
Löytynoja, A.; Goldman, N. Phylogeny-aware gap placement prevents errors in sequence alignment and evolutionary analysis. Science, 2008, 320(5883), 1632-1635.
[70]
Katoh, K.; Standley, D.M. MAFFT multiple sequence alignment software version 7: Improvements in performance and usability. Mol. Biol. Evol., 2013, 30(4), 772-780.
[71]
Edgar, R.C. MUSCLE: Multiple sequence alignment with high accuracy and high throughput. Nucleic Acids Res., 2004, 32(5), 1792-1797.
[72]
Castresana, J. Selection of conserved blocks from multiple alignments for their use in phylogenetic analysis. Mol. Biol. Evol., 2000, 17(4), 540-552.
[73]
Capella-Gutierrez, S.; Silla-Martinez, J.M.; Gabaldon, T. trimAl: a tool for automated alignment trimming in large-scale phylogenetic analyses. Bioinformatics, 2009, 25(15), 1972-1973.
[74]
Yang, Z. PAML 4: phylogenetic analysis by maximum likelihood. Mol. Biol. Evol., 2007, 24(8), 1586-1591.
[75]
Benjamini, Y.; Hochberg, Y. Controlling the false discovery rate: A practical and powerful approach to multiple testing. J. R. Stat. Soc. B, 1995, 289-300.
[76]
Storey, J.D.; Tibshirani, R. Statistical significance for genomewide studies. Proc. Natl. Acad. Sci. USA, 2003, 100(16), 9440-9445.
[77]
Zhang, J.; Kumar, S. Detection of convergent and parallel evolution at the amino acid sequence level. Mol. Biol. Evol., 1997, 14(5), 527-536.
[78]
Gallant, J.R.; Traeger, L.L.; Volkening, J.D.; Moffett, H.; Chen, P-H.; Novina, C.D.; Phillips, G.N.; Anand, R.; Wells, G.B.; Pinch, M. Genomic basis for the convergent evolution of electric organs. Science, 2014, 344(6191), 1522-1525.
[79]
Pfenning, A.R.; Hara, E.; Whitney, O.; Rivas, M.V.; Wang, R.; Roulhac, P.L.; Howard, J.T.; Wirthlin, M.; Lovell, P.V.; Ganapathy, G.; Mouncastle, J.; Moseley, M.A.; Thompson, J.W.; Soderblom, E.J.; Iriki, A.; Kato, M.; Gilbert, M.T.P.; Zhang, G.; Bakken, T.; Bongaarts, A.; Bernard, A.; Lein, E.; Mello, C.V.; Hartemink, A.J.; Jarvis, E.D. Convergent transcriptional specializations in the brains of humans and song-learning birds. Science, 2014, 346(6215), 1256846.
[80]
Brawand, D.; Soumillon, M.; Necsulea, A.; Julien, P.; Csardi, G.; Harrigan, P.; Weier, M.; Liechti, A.; Aximu-Petri, A.; Kircher, M.; Albert, F.W.; Zeller, U.; Khaitovich, P.; Grutzner, F.; Bergmann, S.; Nielsen, R.; Paabo, S.; Kaessmann, H. The evolution of gene expression levels in mammalian organs. Nature, 2011, 478(7369), 343-348.
[81]
Barbosa-Morais, N.L.; Irimia, M.; Pan, Q.; Xiong, H.Y.; Gueroussov, S.; Lee, L.J.; Slobodeniuc, V.; Kutter, C.; Watt, S.; Colak, R.; Kim, T.; Misquitta-Ali, C.M.; Wilson, M.D.; Kim, P.M.; Odom, D.T.; Frey, B.J.; Blencowe, B.J. The evolutionary landscape of alternative splicing in vertebrate species. Science, 2012, 338(6114), 1587-1593.
[82]
Merkin, J.; Russell, C.; Chen, P.; Burge, C.B. Evolutionary dynamics of gene and isoform regulation in mammalian tissues. Science, 2012, 338(6114), 1593-1599.
[83]
Simonson, T.S. Altitude adaptation: A glimpse through various lenses. High Alt. Med. Biol., 2015, 16(2), 125-137.
[84]
Cheviron, Z.A.; Whitehead, A.; Brumfield, R.T. Transcriptomic variation and plasticity in rufous-collared sparrows (Zonotrichia capensis) along an altitudinal gradient. Mol. Ecol., 2008, 17(20), 4556-4569.
[85]
Savolainen, O.; Lascoux, M.; Merila, J. Ecological genomics of local adaptation. Nat. Rev. Genet., 2013, 14(11), 807-820.
[86]
Storz, J.F.; Scott, G.R.; Cheviron, Z.A. Phenotypic plasticity and genetic adaptation to high-altitude hypoxia in vertebrates. J. Exp. Biol., 2010, 213(24), 4125-4136.