[1]
European Commission Eurostat Active Ageing and Solidarity Between Generations. A Statistical Portrait of the European Union 2012; 1-147.
[2]
Kelley AS, McGarry K, Gorges R, Skinner JS. The burden of health care costs for patients with dementia in the last 5 years of life. Ann Intern Med 2015; 163: 729-36.
[4]
Cornelius E. Increased incidence of lymphomas in thymectomized mice-evidence for an immunological theory of aging. Experientia 1972; 28: 459.
[5]
Davidovic M, Sevo G, Svorcan P, Milosevic DP, Despotovic N, Erceg P. Old age as a privilege of the “selfish ones”. Aging Dis 2010; 1: 139-46.
[6]
Jin K. Modern biological theories of aging. Aging Dis 2010; 1: 72-4.
[7]
van Heemst D. Insulin, IGF-1 and longevity. Aging Dis 2010; 1: 147-57.
[8]
Sergiev PV, Dontsova OA, Berezkin GV. Theories of aging: An ever-evolving field. J Nature 2015; 7: 9-18.
[9]
Brayne C. The elephant in the room: Healthy brains in later life, epidemiology and public health. Nat Rev Neurosci 2007; 8: 233-9.
[12]
Psaltopoulou T, Sergentanis TN, Panagiotakos DB, Sergentanis IN, Kosti R, Scarmeas N. Mediterranean diet, stroke, cognitive impairment, and depression: A meta-analysis. Ann Neurol 2013; 74: 580-91.
[13]
Kuczmarski MF, Allegro D, Stave E. The association of healthful diets and cognitive function: A review. J Nutr Gerontol Geriatr 2014; 33: 69-90.
[14]
Allès B, Samieri C, Féart C, Jutand MA, Laurin D, Barberger-Gateau P. Dietary patterns: A novel approach to examine the link between nutrition and cognitive function in older individuals. Nutr Res Rev 2015; 25: 207-22.
[15]
van de Rest O, Berendsen AA, Haveman-Nies A, de Groot LC. Dietary patterns, cognitive decline, and dementia: A systematic review. Adv Nutr 2015; 6: 154-68.
[20]
Dahiya S, Rani R, Dhingra D, Kumar S, Dilbaghi N. Potentiation of nootropic activity of EGCG loaded nanosuspension by piperine in swiss male albino mice. J Pharm Sci 2018; 4: 296-302.
[26]
Svennerholm L, Boström K, Jungbjer B. Changes in weight and compositions of major membrane components of human brain during the span of adult human life of Swedes. Acta Neuropathol 1997; 94: 345-52.
[27]
Scahill RI, Frost C, Jenkins R, Whitwell JL, Rossor MN, Fox NC. A longitudinal study of brain volume changes in normal aging using serial registered magnetic resonance imaging. Arch Neurol 2003; 60: 989-94.
[28]
Lanza G, Bramanti P, Cantone M, Pennisi M, Pennisi G, Bella R. Vascular cognitive impairment through the looking glass of transcranial magnetic stimulation. Behav Neurol 2017; 20171421326
[30]
Dröge W, Schipper HM. Oxidative stress and aberrant signalling in aging and cognitive decline. Aging Cell 2007; 6: 361-70.
[32]
Fukui K, Onodera K, Shinkai T, Suzuki S, Urano S. Impairment of learning and memory in rats caused by oxidative stress and aging, and changes in antioxidative defense systems. Ann N Y Acad Sci 2001; 928: 168-75.
[33]
Fukui K, Omoi NO, Hayasaka T, Shinnkai T, Suzuki S, Abe K, et al. Cognitive impairment of rats caused by oxidative stress and aging, and its prevention by vitamin E. Ann N Y Acad Sci 2002; 959: 275-84.
[34]
Aksenov MY, Aksenova MV, Butterfield DA, Geddes JW, Markesbery WR. Protein oxidation in the brain in Alzheimer’s disease. Neuroscience 2001; 103: 373-83.
[37]
Alzheimer’s Association. Alzheimer’s Facts and Figures 2018; 14: 367-429.
[38]
World Health Organization. Dementia: A public health priority. Executive Summary 2012.
[39]
World Health Organisation. Towards a dementia plan (2018): . A WHO guide .
[40]
Plassman BL, Langa KM, Fisher GG, Heeringa SG, Weir DR, Ofstedal MB, et al. Prevalence of cognitive impairment without dementia in the United States. Ann Intern Med 2008; 148: 427-34.
[43]
Parkin A. Memory and amnesia. Oxford: Blackwall 1997.
[46]
Connelly SL, Hasher L, Zacks RT. Age and reading: The impact of distraction. Psychol. Buckner RL Memory and executive function in aging and AD: Multiple factors that cause decline and reserve factors that compensate. Neuron 2004; 44: 195-208.
[47]
Nyberg L, Lovden M, Riklund K, Lindenberger U, Backman L. Memory aging and brain maintenance. Trends Cogn Sci 2012; 16: 292-305.
[48]
Nilsson LG. Memory function in normal aging. Acta Neurol Scand Suppl 2003; 179: 7-13.
[50]
Rabbitt P, Lowe C, Shilling V. Frontal tests and models for cognitive ageing. Eur J Cogn Psychol 2001; 13: 5-28.
[51]
Salthouse TA. The processing-speed theory of adult age differences in cognition. Psychol Rev 1996; 103: 403-28.
[52]
Park DC, Reuter-Lorenz P. The adaptive brain: Aging and neurocognitive scaffolding. Annu Rev Psychol 2009; 60: 173-96.
[55]
Kent PS, Luszcz MA. A review of the Boston naming test and multiple-occasion normative data for older adults on 15-item versions. Clin Neuropsychol 2002; 16: 555-74.
[56]
Rogers SL, Friedman RB. The underlying mechanisms of semantic memory loss in Alzheimer’s disease and semantic dementia. Neuropsychologia 2008; 46: 12-21.
[57]
ADI. Alzheimer’s Disease International Policy brief for G8 heads of government: the global impact of dementia 2013-2050. London: Alzheimer’s Disease International 2013.
[58]
Prince M, Bryce R, Albanese E, Wimo A, Ribeiro W, Ferri CP. The global prevalence of dementia: A systematic review and metaanalysis. Alzheimers Dement 2013; 9: 63-75.
[60]
Langa KM. Is the risk of Alzheimer’s disease and dementia declining? Alzheimers Res Ther 2015; 7: 34.
[61]
Smith PJ, Blumenthal JA. Dietary Factors and Cognitive Decline. J Prev Alzheimers Dis 2016; 3: 53-64.
[64]
Spencer SJ, Korosi A, Layé S, Shukitt-Hale B, Barrientos RM. Food for thought: How nutrition impacts cognition and emotion. NPJ Sci Food 2017; 1: 7.
[65]
Lourida I, Soni M, Thompson-Coon J, Purandare N, Lang IA, Ukoumunne OC, et al. Mediterranean diet, cognitive function, and dementia: A systematic review. Epidemiology 2013; 24: 479-89.
[67]
Petersson SD, Philippou E. Mediterranean diet, cognitive function, and dementia: A systematic review of the evidence. Adv Nutr 2016; 7: 889-904.
[69]
Malouf R, Grimley EJ. The effect of vitamin B6 on cognition. Cochrane Database Syst Rev 2003; 4CD004393
[70]
Quadri P, Fragiacomo C, Pezzati R, Zanda E, Forloni G, Tettamanti M, et al. Homocysteine, folate, and vitamin B-12 in mild cognitive impairment, Alzheimer disease, and vascular dementia. Am J Clin Nutr 2004; 80: 114-22.
[71]
Quadri P, Fragiacomo C, Pezzati R, Zanda E, Tettamanti M, Lucca U. Homocysteine and B vitamins in mild cognitive impairment and dementia. Clin Chem Lab Med 2005; 43: 1096-100.
[73]
Wald DS, Kasturiratne A, Simmonds M. Effect of folic acid, with or without other B vitamins, on cognitive decline: meta-analysis of randomized trials. Am J Med 2010; 123: 522-7.
[74]
Muskiet FA, van Goor SA, Kuipers RS, Velzing-Aarts FV, Smit EN, Bouwstra H, et al. Long-chain polyunsaturated fatty acids in maternal and infant nutrition. Prostaglandins Leukot Essent Fatty Acids 2006; 75: 135-44.
[75]
Boudrault C, Bazinet RP, Ma DW. Experimental models and mechanisms underlying the protective effects of n-3 polyunsaturated fatty acids in Alzheimer’s disease. J Nutr Biochem 2009; 20: 1-10.
[76]
Letenneur L, Proust-Lima C, Le Gouge A, Dartigues JF, Barberger-Gateau P. Flavonoid intake and cognitive decline over a 10-year period. Am J Epidemiol 2007; 165: 1364-71.
[78]
DeKosky ST, Williamson JD, Fitzpatrick AL, Kronmal RA, Ives DG, Saxton JA, et al. Ginkgo Evaluation of Memory (GEM) Study Investigators. JAMA 2008; 300: 2253-62.
[79]
Taylor JE. Neuromediator binding to receptors in the rat brain. The effect of chronic administration of Ginkgo biloba extract. Presse Med 1986; 15(31): 1491-3.
[81]
Christen Y. Ginkgo biloba and neurodegenerative disorders. Front Biosci 2004; 9: 3091-104.
[82]
Joseph JA, Shukitt-Hale B, Denisova NA, Prior RL, Cao G, Martin A, et al. Long-term dietary strawberry, spinach, or vitamin E supplementation retards the onset of age-related neuronal signal-transduction and cognitive behavioral deficits. J Neurosci 1998; 18: 8047-55.
[83]
Farr SA, Poon HF, Dogrukol-Ak D, Drake J, Banks WA, Eyerman E, et al. The antioxidants alpha-lipoic acid and N-acetyl cysteine reverse memory impairment and brain oxidative stress in aged SAMP8 mice. J Neurochem 2003; 84: 1173-83.
[84]
Morris MC, Evans DA, Bienias JL, Tangney CC, Wilson RS. Vitamin E and cognitive decline in older persons. Arch Neurol 2002; 59: 1125-32.
[87]
Shukitt-Hale B, Cheng V, Joseph JA. Effects of blackberries on motor and cognitive function in aged rats. Nutr Neurosci 2009; 12(3): 135-40.
[88]
Maher P. How fisetin reduces the impact of age and disease on CNS function. Front Biosci (Schol Ed) 2015; 7: 58-82.
[91]
Hartman RE, Shah A, Fagan AM, Schwetye KE, Parsadanian M, Schulman RN, et al. Pomegranate juice decreases amyloid load and improves behavior in a mouse model of Alzheimer’s disease. Neurobiol Dis 2006; 24: 506-15.
[92]
Pu F, Mishima K, Irie K, Motohashi K, Tanaka Y, Orito K, et al. Neuroprotective effects of quercetin and rutin on spatial memory impairment in an 8-arm radial maze task and neuronal death induced by repeated cerebral ischemia in rats. J Pharmacol Sci 2007; 104: 329-34.
[93]
Solfrizzi V, Panza F, Torres F, Mastroianni F, Del Parigi A, Venezia A, et al. High monounsaturated fatty acids intake protects against age-related cognitive decline. Neurology 1999; 52: 1563-9.
[96]
Dartigues JF, Carcaillon L, Helmer C, Lechevallier N, Lafuma A, Khoshnood B. Vasodilators and nootropics as predictors of dementia and mortality in the PAQUID cohort. J Am Geriatr Soc 2007; 55: 395-9.
[97]
Ilieva IP, Hook CJ, Farah MJ. Prescription stimulants’ effects on healthy inhibitory control, working memory, and episodic memory: A Meta-analysis. J Cogn Neurosci 2015; 27: 1069-89.
[99]
Camfield DA, Stough C, Farrimond J, Scholey AB. Acute effects of tea constituents L-theanine, caffeine, and epigallocatechin gallate on cognitive function and mood: A systematic review and meta-analysis. Nutr Rev 2014; 72: 507-22.
[101]
Ahmed AH, Oswald RE. Piracetam defines a new binding site for allosteric modulators of alpha-amino-3-hydroxy-5-methyl-4-isoxazole-propionic acid (AMPA) receptors. J Med Chem 2010; 53: 2197-203.
[102]
Takeo S, Hayashi H, Miyake K, Takagi K, Tadokoro M, Takagi N, et al. Effects of delayed treatment with nebracetam on neurotransmitters in brain regions after microsphere embolism in rats. Br J Pharmacol 1997; 121: 477-8.
[103]
Oyaizu M, Narahashi T. Modulation of the neuronal nicotinic acetylcholine receptor-channel by the nootropic drug nefiracetam. Brain Res 1999; 822: 72-9.
[104]
Singh HK, Dhawan BN. Neuropsychopharmacological effects of the Ayurvedic nootropic Bacopa monniera Linn. (Brahmi). Int J Pharmacol 1997; 29: 359-s65.
[105]
Anand T, Naika M, Swamy MSL, Khanum F. Antioxidant and DNA damage preventive properties of Bacopa monniera (L) wettst. Free Radic Antioxid 2011; 1: 84-90.
[106]
Kennedy DO, Scholey AB. Ginseng: Potential for the enhancement of cognitive performance and mood. Pharmacol Biochem Behav 2003; 75: 687-700.
[107]
Qu ZQ, Zhou Y, Zeng YS, Li Y, Chung P. Pretreatment with Rhodiola rosea extract reduces cognitive impairment induced by intracerebroventricular streptozotocin in rats: Implication of anti-oxidative and neuroprotective effects. Biomed Environ Sci 2009; 22(4): 318-26.
[108]
Cervenka F, Jahodár L. Plant metabolites as nootropics and cognitives. Ceska Slov Farm 2006; 55: 219-29.
[112]
Fehske CJ, Leuner K, Müller WE. Ginkgo biloba extract (EGb761®) influences monoaminergic neurotransmission via inhibition of NE uptake, but not MAO activity after chronic treatment. Pharmacol Res 2009; 60: 68-73.
[113]
Sloley B, Pang P, Huang B, Ba F, Li F, Benishin C, et al. American ginseng extract reduces scopolamine-induced amnesia in a spatial learning task. J Psychiatry Neurosci 1999; 24: 442.
[114]
Heo JH, Lee ST, Chu K, Oh MJ, Park HJ, Shim JY, et al. An open-label trial of Korean red ginseng as an adjuvant treatment for cognitive impairment in patients with Alzheimer’s disease. Eur J Neurol 2008; 15: 865-8.
[115]
Lee ST, Chu K, Sim JY, et al. Panax ginseng enhances cognitive performance in Alzheimer disease. Alzheimer Dis Assoc Disord 2008; 22: 222-6.
[121]
Gray NE, Magana AA, Lak P, Wright KM, Quinn J, Stevens JF, et al. Centella asiatica: Phytochemistry and mechanisms of neuroprotection and cognitive enhancement. Phytochem Rev 2018; 17: 161-94.
[124]
Matsuda H, Murakami T, Kishi A, Yoshikawa M. Structures of withanosides I, II, III, IV, V, VI, and VII, new withanolide glycosides, from the roots of Indian Withania somnifera DUNAL and inhibitory activity for tachyphylaxis to clonidine in isolated guinea-pig ileum. Bioorg Med Chem 2001; 9: 1499-507.
[135]
Coombes AJ. Dictionary of Plant Names. London, UK: Hamlyn Books 1994.
[136]
Nakanishi K. Terpene trilactones from Gingko biloba: From ancient times to the 21st century. Bioorg Med Chem 2005; 13: 4987-5000.
[140]
Chen X, Salwinski S, Lee TJ. Extracts of Ginkgo biloba and ginsenosides exert cerebral vasorelaxation via a nitric oxide pathway. Clin Exp Pharmacol Physiol 1997; 24: 958-9.
[141]
Huang SY, Jeng C, Kao SC, Yu JJ, Liu DZ. Improved haemorrheological properties by Ginkgo biloba extract (Egb 761) in type 2 diabetes mellitus complicated with retinopathy. Clin Nutr 2004; 23: 615-21.
[142]
Huguet F, Tarrade T. Alpha 2-adrenoceptor changes during cerebral ageing. The effect of Ginkgo biloba extract. J Pharm Pharmacol 1992; 44: 24-7.
[143]
Hadjiivanova CI, Petkov VV. Effect of Ginkgo biloba extract on beta-adrenergic receptors in different rat brain regions. Phytother Res 2002; 16: 488-90.
[144]
Baeg IH, So SH. The world ginseng market and the ginseng (Korea). J Ginseng Res 2013; 37: 1-7.
[146]
Xie JT, Mchendale S, Yuan CS. Ginseng and diabetes. Am J Chin Med 2005; 33: 397-404.
[148]
Attele AS, Wu JA, Yuan CS. Ginseng pharmacology: Multiple constituents and multiple actions. Biochem Pharmacol 1999; 58: 1685-93.
[149]
Zhang JT, Qu ZW, Liu Y, Deng HL. Preliminary study on the antiamnestic mechanism of ginsenoside Rg1 and Rb1. Eur J Pharmacol 1990; 183: 1460-1.
[150]
Tsang D, Yeung HW, Tso WW, Peck H. Ginseng saponins: Influence on neurotransmitter uptake in rat brain synaptosomes. Planta Med 1985; 3: 221-4.
[151]
Jin SH, Park JK, Nam KY, Park SN, Jung NP. Korean red ginseng saponins with low ratios of protopanaxadiol and protopanaxatriol saponin improve scopolamine-induced learning disability and spatial working memory in mice. J Ethnopharmacol 1999; 66(2): 123-9.
[156]
Sharma PC, Yelne MB, Dennis TJ. Database on Medicinal plants used in Ayurveda and Sidha Vol 1. New Delhi: CCRAS, Dept. of AYUSH, Ministry of Health and Family Welfare, Govt. of India 2005; pp. 26-6.
[157]
Kuroda M, Mimaki Y, Sashida Y, Mae T, Kishida H, Nishiyama T, et al. Phenolics with PPAR-gamma ligand-binding activity obtained from licorice (Glycyrrhiza uralensis roots) and ameliorative effects of glycyrin on genetically diabetic KK-A(y) mice. Bioorg Med Chem Lett 2003; 13: 4267-72.
[158]
Dhingra D, Parle M, Kulkarni SK. Memory enhancing activity of Glycyrrhiza glabra in mice. J Ethnopharmacol 2004; 91: 361-5.
[159]
Tripathi YB, Chaurasia S, Tripathi E, Upadhyay A, Dubey GP. Bacopa monniera Linn as an antioxidant: Mechanism of action. Indian J Exp Biol 1996; 34: 523-6.
[160]
Bhattacharya SK, Bhattacharya A, Kumar A, Ghosal S. Antioxidant activity of Bacopa monniera in rat frontal cortex, striatum and hippocampus. Phytother Res 2000; 14: 174-9.
[161]
Rehni AK, Pantlya HS, Shri R, Singh M. Effect of chlorophyll and aqueous extracts of Bacopa monniera and Valeriana wallichii on ischaemia and reperfusion-induced cerebral injury in mice. Indian J Exp Biol 2007; 45: 764-9.
[162]
Anand T, Naika M, Swamy MSL, Khanum F. Antioxidant and DNA damage preventive properties of Bacopa monniera (L) wettst. Free Radic Antioxid 2011; 1: 84-90.
[163]
Girish SA, Barabde U, Wadodkar S, Dorle A. Effect of Bramhi Ghrita, an polyherbal formulation on learning and memory paradigms in experimental animals. Indian J Pharmacol 2004; 36: 159-62.
[167]
Metcalf RL. Ullmann’s Encyclopedia of Industrial Chemistry. 1989. Insect control.
[168]
Lloyd GK, Williams M. Neuronal nicotinic acetylcholine receptors as novel drug targets. J Pharmacol Exp Ther 2000; 292: 461-7.