[1]
Ali, I.; Haque, A.; Saleem, K. Hsieh, Ming, F. Curcumin-I Knoevenagel’s condensates and their Schiff’s bases as anticancer agents: Synthesis, pharmacological and simulation studies. Bioorg. Med. Chem., 2013, 21(13), 3808-3820.
[2]
Ali, I.; Lone, M.N.; Al-Othman, Z.A.; Al-Warthan, A.; Sanagi, M.M. Heterocyclic scaffolds: Centrality in anticancer drug development. Curr. Drug Targets, 2015, 16(7), 711-734.
[3]
Ali, I.; Wani, W.A.; Haque, A.; Saleem, K. Glutamic acid and its derivatives: candidates for rational design of anticancer drugs. Future Med. Chem., 2013, 5(8), 961-978.
[4]
Ali, I.; Wani, W.A.; Saleem, K.; Haque, A. Platinum compounds: A hope for future cancer chemotherapy. Anticancer. Agents Med. Chem., 2013, 13(2), 296-306.
[5]
Ali, I.; Wani, W.A.; Saleem, K.; Haque, A. Thalidomide: A banned drug resurged into future anticancer drug. Curr. Drug Ther., 2012, 7(1), 13-23.
[6]
Basheer, A.A. Chemical chiral pollution: Impact on the society and science and need of the regulations in the 21st century. Chirality, 2018, 30(4), 402-406.
[7]
Ali, I. Nano anti-cancer drugs: Pros and cons and future perspectives. Curr. Cancer Drug Targets, 2011, 11(2), 131-134.
[8]
Ali, I.; Wani, W.A.; Saleem, K.; Wesselinova, D. Syntheses, DNA binding and anticancer profiles of L-glutamic acid ligand and its copper(II) and ruthenium(III) complexes. Med. Chem., 2013, 9(1), 11-21.
[9]
Ali, I.; Saleem, K.; Wesselinova, D.; Haque, A. Synthesis, DNA binding, hemolytic, and anti-cancer assays of curcumin I-based ligands and their ruthenium(III) complexes. Med. Chem. Res., 2013, 22(3), 1386-1398.
[10]
Ali, I.; Wani, W.A.; Saleem, K.; Hseih, M.F. Design and synthesis of thalidomide based dithiocarbamate Cu(II), Ni(II) and Ru(III) complexes as anticancer agents. Polyhedron, 2013, 56, 134-143.
[11]
Ali, I.; Wani, W.A.; Saleem, K.; Hsieh, M.F. Anticancer metallodrugs of glutamic acid sulphonamides: In silico, DNA binding, hemolysis and anticancer studies. RSC Advances, 2014, 4(56), 29629-29641.
[12]
Ali, I.; Lone, M.N.; Suhail, M.; Mukhtar, S.D.; Asnin, L. Advances in nanocarriers for anticancer drugs delivery. Curr. Med. Chem., 2016, 23(20), 2159-2187.
[13]
Ali, I.; Lone, M.N.; Alothman, Z.A.; Alwarthan, A. Insights into the pharmacology of new heterocycles embedded with oxopyrrolidine rings: DNA binding, molecular docking, and anticancer studies. J. Mol. Liq., 2017, 234, 391-402.
[14]
Ali, I.; Lone, M.N.; Hsieh, M.F. N-substituted (substituted-5-benzylidine) thiazolidine-2,4-diones: crystal structure, in silico, DNA binding and anticancer studies. Biointerface Res. Appl. Chem., 2016, 6(4), 1356-1379.
[15]
Decker, M. Hybrid molecules incorporating natural products: Applications in cancer therapy, neurodegenerative disorders and beyond. Curr. Med. Chem., 2011, 18(10), 1464-1475.
[16]
Laursen, J.B.; Nielsen, J. Phenazine natural products: Bios-ynthesis, synthetic analogues, and biological activity. Chem. Rev., 2004, 104(3), 1663-1685.
[17]
Gao, X.C.; Lu, Y.Y.; Xing, Y.Y.; Ma, Y.H.; Lu, J.S.; Bao, W.W.; Wang, Y.M.; Xi, T. A novel anticancer and antifungus phenazine derivative from a marine actinomycete BM-17. Microbiol. Res., 2012, 167(10), 616-622.
[18]
Sciabola, S.; Carosati, E.; Cucurull-Sanchez, L.; Baroni, M.; Mannhold, R. Novel TOPP descriptors in 3D-QSAR analysis of apoptosis inducing 4-aryl-4H-chromenes: Comparison versus other 2D- and 3D-descriptors. Bioorg. Med. Chem., 2007, 15(19), 6450-6462.
[19]
Fatemi, M.H.; Gharaghani, S. A novel QSAR model for prediction of apoptosis-inducing activity of 4-aryl-4-H-chromenes based on support vector machine. Bioorg. Med. Chem., 2007, 15(24), 7746-7754.
[20]
Afantitis, A.; Melagraki, G.; Sarimveis, H.; Koutentis, P.A.; Markopoulos, J.; Igglessi-Markopoulou, O. A novel QSAR model for predicting induction of apoptosis by 4-aryl-4H-chromenes. Bioorg. Med. Chem., 2006, 14(19), 6686-6694.
[21]
Gao, J.; Chen, M.; Tong, X.; Zhu, H.; Yan, H.B.; Liu, D.C.; Li, W.J.; Qi, S.Y.; Xiao, D.K.; Wang, Y.Z.; Lu, Y.Y.; Jiang, F. Synthesis, antitumor activity, and structure-activity relationship of some benzo[a]pyrano[2,3-c]phenazine derivatives. Comb. Chem. High Throughput Screen., 2015, 18(10), 960-974.
[22]
Lu, Y.Y.; Wang, L.L.; Wang, X.B.; Xi, T.; Liao, J.M.; Wang, Z.X.; Jiang, F. Design, combinatorial synthesis and biological evaluations of novel 3-amino-1′-((1-aryl-1H-1,2,3-triazol-5-yl)methyl)-2′-oxospiro[benzo[a] pyrano[2,3-c]phenazine-1,3′-indoli-ne]-2-carbonitrile antitumor hybrid molecules. Eur. J. Med. Chem., 2017, 135, 125-141.
[23]
Lu, Y.Y.; Yan, Y.R.; Wang, L.L.; Wang, X.B.; Gao, J.; Xi, T.; Wang, Z.X.; Jiang, F. Design, facile synthesis and biological evaluations of novel pyrano[3,2-a]phenazine hybrid molecules as antitumor agents. Eur. J. Med. Chem., 2017, 127, 928-943.
[24]
Seillan, C.; Brisset, H.; Siri, O. Efficient synthesis of substituted dihydrotetraazapentacenes. Org. Lett., 2008, 10(18), 4013-4016.