[1]
Falconi, M.; Eriksson, B. Kaltsa,s G.; Bartsch, D.K.; Capdevila, J.; Caplin, M.; Kos-Kudla, B.; Kwekkeboom, D.; Rindi, G.; Klöppel, G.; Reed, N.; Kianmanesh, R.; Jensen, R.T. ENETS consensus guidelines update for the management of patients with functional pancreatic neuroendocrine tumors and nonfunctional pancreatic neuroendocrine tumors. Neuroendocrinology, 2016, 103, 153-171.
[2]
Klimstra, D.S.; Modlin, I.R.; Coppola, D.; Lloyd, R.V.; Suster, S. The pathologic classification of neuroendocrine tumors: A review of nomenclature, grading, and staging systems. Pancreas, 2010, 39(6), 707-712.
[3]
Li, X.; Gou, S.; Liu, Z.; Ye, Z.; Wang, C. Assessment of the
American Joint commission on cancer 8th edition staging system
for patients with pancreatic neuroendocrine tumors: A surveillance,
epidemiology, and end results analysis.Cancer Med; , 2018, 7, pp. (3)626-634.
[4]
Halfdanarson, T.R.; Rabe, K.G.; Rubin, J.; Petersen, G.M. Pancreatic neuroendocrine tumors (PNETs): Incidence, prognosis and recent trend toward improved survival. Ann. Oncol., 2008, 19, 1727-1733.
[5]
ENETS consensus guidelines for the standards of care in neuroendocrine tumors: Radiological, nuclear medicine & hybrid imaging. Neuroendocrinology, 2017, 105(3), 212-244.
[6]
Lloyd, R.V.; Osamura, R.Y.; Klöppel, G.; Rosai, J. WHO classification
of tumours of endocrine organs. WHO Classification of Tumours, (4th Edition. ) Volume 10
[7]
Ahlstrom, H.; Eriksson, B.; Bergstrom, M.; Bjurling, P.; Langstrom, B.; Oberg, K. Pancreatic neuroendocrine tumors: Diagnosis with PET. Radiology, 1995, 195(2), 333-337.
[8]
Baumann, T.; Rottenburger, C.; Nicolas, G.; Wild, D. Gastroenteropancreatic neuroendocrine tumors (GEP-NET)- Imaging and staging. Best Pract. Res. Clin. Endocrinol. Metab., 2016, 45-57.
[9]
Fani, M. Kolenc, Peitl, P.; Velikyan, I. Current status of radiopharmaceuticals for the theranostics of neuroendocrine neoplasms. Pharmaceuticals, 2017, 10, 30.
[10]
Deroose, C.M.; Hindié, E.; Kebebew, E.; Goichot, B.; Pacak, K.; Taïeb, D.; Imperiale, A. Molecular imaging of gastroenteropancreatic neuroendocrine tumors: Current status and future directions. J. Nucl. Med., 2016, 57, 1949-1956.
[11]
Fani, M. Current and future radiopharmaceuticals in neuroendocrine tumor imaging.Chapter 7; 141-162, in: K. Pacak, D. Taïeb (eds.) . Diagnostic and Therapeutic Nuclear Medicine for Neuroendocrine
Tumors.Contemporary Endocrinology; Springer, 2017.
[12]
D’Herbomez, M.; Coppin, L.; Bauters, C.; Rouaix-Emery, N.; Carnaille, B.; Do Cao, C. Biomarkers of neuroendocrine tumors. Ann. Biol. Clin. (Paris), 2016, 74(6), 669-679.
[13]
Liu, I.H.; Kunz, P.L. Biologics in gastrointestinal and pancreatic neuroendocrine tumors. J. Gastrointest. Oncol., 2017, 8(3), 457-465.
[14]
Reubi, J.C.; Waser, B.; Schaer, J.C.; Laissue, J.A. Somatostatin receptor sst1-sst5 expression in normal and neoplastic human tissues using receptor autoradiography with subtype-selective ligands. Eur. J. Nucl. Med., 2001, 28(7), 836-846.
[15]
Schaer, J.C.; Waser, B.; Mengod, G.; Reubi, J.C. Somatostatin receptor subtypes sst1, sst2, sst3 and sst5 expression in human pituitary, gastroentero-pancreatic and mammary tumors: Comparison of mRNA analysis with receptor autoradiography. Int. J. Cancer, 1997, 70(5), 530-537.
[16]
Riesen, A.; Zehnder, M. Kaden, T.A. Metal complexes of Macrocyclic Ligands. Institut fur anorganische Chemie der Universitat Basel, Basel, 1986. Helvetica Chimica ACTA, 1986, 69, 2067-2073.
[17]
Korner, M.; Christ, E.; Wild, D.; Reubi, J.C. Glucagon-like peptide-1 receptor overexpression in cancer and its impact on clinical applications. Front. Endocrinol. (Lausanne), 2012, 3, 158.
[18]
Korner, M.; Stockli, M.; Waser, B.; Reubi, J.C. GLP-1 receptor expression in human tumors and human normal tissues: Potential for in vivo targeting. J. Nucl. Med., 2007, 48, 736-743.
[19]
Wild, D.; Christ, E.; Caplin, M.E.; Kurzawinski, T.R.; Forrer, F.; Brändle, M.; Seufert, J.; Weber, W.A.; Bomanji, J.; Perren, A.; Ell, P.J.; Reubi, J.C. Glucagon-like peptide-1 versus somatostatin receptor targeting reveals 2 distinct forms of malignant insulinomas. J. Nucl. Med., 2011, 52, 1073-1078.
[20]
Deroose, C.M.; Hindié, E.; Kebebew, E.; Goichot, B.; Pacak, K.; Taïeb, D.; Imperiale, A. Molecular imaging of gastroenteropancreatic neuroendocrine tumors: Current status and future directions. J. Nucl. Med., 2016, 57, 1949-1956.
[21]
Krenning, E.P.; Kwekkeboom, D.J.; Bakker, W.H.; Breeman, W.A.P.; Kooij, P.P.M.; Oei, H.Y.; van Hagen, M.; Postema, P.T.E.; de Jong, M.; Reubi, J.C.; Visser, T.J.; Reijs, A.E.M.; Hofland, L.J.; Koper, J.W.; Lamberts, S.W.J. Somatostatin receptor scintigraphy with [111In-DTPA-D-Phe1]- and [123I-Tyr3]-octreotide: the Rotterdam experience with more than 1000 patients. Eur. J. Nucl. Med., 1993, 20, 716-731.
[22]
Bakker, W.H.; Krenning, E.P.; Breeman, W.A.R.; Kooij, P.P.M.; Reubi, J-C.; Koper, J.W.; de Jong, M.; Lameris, J.S.; Visser, T.J.; Lamberts, S.W.J. In vivo use of a radioiodinated somatostatin analogue: dynamics, metabolism and binding to somatostatin receptor-positive turnouts in man. J. Nucl. Med., 1991, 32, 1184-1189.
[23]
Krenning, E.P.; Bakker, W.H.; Kooij, P.P.M.; Breeman, W.A.R.; Oei, H.Y.; de Jong, M.; Reubi, J-C.; Visser, T.J.; Bruns, C.; Kwekkeboom, D.J.; Reijs, A.E.M.; van Hagen, P.M.; Koper, J.W.; Lamberts, S.W.J. Somatostatin receptor scintigraphy with [111In-DTPA-D-PHE1] - octreotide in man: metabolism, dosimetry and comparison with [123I-Tyr-3-]-octreotide. J. Nucl. Med., 1992, 33, 652-658.
[24]
Forrer, F.; Uusijarvi, H.; Waldherr, C.; Cremonesi, M.; Bernhardt, P.; Mueller-Brand, J.; Maecke, H.R. A comparison of (111)In-DOTATOC and (111)In-DOTATATE: biodistribution and dosimetry in the same patients with metastatic neuroendocrine tumours. Eur. J. Nucl. Med. Mol. Imaging, 2004, 31(9), 1257-1262.
[25]
Kjaer, A.; Knigge, U. Use of radioactive substances in diagnosis and treatment of neuroendocrine tumors. Scand. J. Gastroenterol., 2015, 50(6), 740-747.
[26]
Ezziddin, S.; Logvinski, T.; Yong-Hing, C.; Ahmadzadehfar, H.; Fischer, H.P.; Palmedo, H.; Bucerius, J.; Reinhardt, M.J.; Biersack, H.J. Factors Predicting Tracer Uptake in Somatostatin Receptor and MIBG Scintigraphy of Metastatic Gastroenteropancreatic Neuroendocrine Tumors. J. Nucl. Med., 2006, 47, 223-233.
[27]
Decristoforo, C.; Mather, S.J.; Cholewinski, W.; Donnemiller, E.; Riccabona, G.; Moncayo, R. 99mTc-EDDA/HYNIC-TOC: a new 99mTc-labelled radiopharmaceutical for imaging somatostatin receptor-positive tumors; first clinical results and intra-patient comparison with 111In-labelled octreotide derivatives. Eur. J. Nucl. Med., 2000, 27(9), 1318-1325.
[28]
Qiao, Z.; Zhang, J.; Jin, X.; Huo, L.; Zhu, Z.; Xing, H.; Li, F. 99mTc-HYNIC-TOC imaging in the evaluation of pancreatic masses which are potential neuroendocrine tumor. Clin. Nucl. Med., 2015, 40(5), 397-400.
[29]
Gabriel, M.; Decristoforo, C.; Donnemiller, E.; Ulmer, H.; Watfah Rychlinski, C.; Mather, S.J.; Moncayo, R. An Intrapatient Comparison of 99mTc-EDDA/HYNIC-TOC with 111In-DTPA-Octreotide for diagnosis of somatostatin receptor-expressing tumors. J. Nucl. Med., 2003, 44, 708-716.
[30]
Frilling, A.; Sotiropoulos, G.C.; Radtke, A.; Malago, M.; Bockisch, A.; Kuehl, H.; Li, J.; Broelsch, C.E. The impact of 68Ga-DOTATOC positron emission tomography/computed tomography on the multimodal management of patients with neuroendocrine tumors. Ann. Surg., 2010, 252, 850-856.
[31]
Reubi, J.C.; Schar, J.C.; Waser, B.; Heppeler, A.; Schmitt, J.S.; Mäcke, H.R. Affinity profiles for human somatostatin receptor subtypes SST1-SST5 of somatostatin radiotracers selected for scintigraphic and radiotherapeutic use. Eur. J. Nucl. Med., 2000, 27, 273-282.
[32]
Bodei, L.; Ambrosini, V.; Herrmann, K.; Modlin, I. Current concepts in 68Ga-DOTATATE imagin of neuroendocrine neoplasms: Interpretation, biodistribution, dosimetry and molecular strategies. J. Nucl. Med., 2017, 58, 1718-1726.
[33]
Kabasakal, L.; Demirci, E.; Ocak, M.; Decristoforo, C.; Araman, A.; Ozsoy, Y.; Uslu, I.; Kanmaz, B. Comparison of 68Ga-DOTATATE and 68Ga-DOTANOC PET/CT imaging in the same patient group with neuroendocrine tumours. Eur. J. Nucl. Med. Mol. Imaging, 2012, 39, 1271-1277.
[34]
Poeppel, T.D.; Binse, I.; Petersenn, S.; Lahner, H.; Schott, M.; Antoch, G.; Brandau, W.; Bockisch, A.; Boy, C. 68Ga-DOTATOC versus 68Ga-DOTATATE PET/CT in functional imaging of neuroendocrine tumors. J. Nucl. Med., 2011, 52, 1864-1870.
[35]
Buchmann, I.; Henze, M.; Engelbrecht, S.; Eisenhut, M.; Runz, A.; Schäfer, M.; Schilling, T.; Haufe, S.; Herrmann, T.; Haberkorn, U. Comparison of 68Ga-DOTATOC PET and 111In-DTPAOC (Octreoscan) SPECT in patients with neuroendocrine tumors. Eur. J. Nucl. Med. Mol. Imaging, 2007, 34, 1617-1626.
[36]
Ruf, J.; Heuck, F.; Schiefer, J.; Denecke, T.; Elgeti, F.; Pascher, A.; Pavel, M.; Stelter, L.; Kropf, S.; Wiedenmann, B.; Amthauer, H. Impact of multiphase 68Ga-DOTATOC-PET/CT on therapy management in patients with neuroendocrine tumors. Neuroendocrinology, 2010, 91, 101-109.
[37]
Naswa, N.; Sharma, P.; Gupta, S.K.; Karunanithi, S.; Reddy, R.M.; Patnecha, P.; Lata, S.; Kumar, R. Dual tracer functional imaging of gastroenteropancreatic neuroendocrine tumors using 68Ga-DOTA-NOC PET-CT and 18F-FDG PET-CT: Competitive or complementary? Clin. Nucl. Med., 2014, 39, e27-e34.
[38]
Ginj, M.; Zhang, H.; Waser, B.; Cescato, R.; Wild, D.; Wang, X.; Erchegyi, J.; Rivier, J.; Mäcke, H.R.; Reubi, J.C. Radiolabeled somatostatin
receptor antagonists are preferable to agonists for in vivo
peptide receptor targeting of tumors. PNAS, 2006, 103 16436±41
[39]
Abiraj, K.; Mansi, R.; Tamma, M.L.; Fani, M.; Forrer, F.; Nicolas, G.; Cescato, R.; Reubi, J.C.; Maecke, H.R. Bombesin antagonist-based radioligands for translational nuclear imaging of gastrin-releasing peptide receptor-positive tumors. J. Nucl. Med., 2011, 52, 1970-1978.
[40]
Fani, M.; Nicolas, G.P.; Wild, D. Somatostatin receptor antagonists for imaging and therapy. J. Nucl. Med., 2017, 58, 61S-66S.
[41]
Wild, D.; Fani, M.; Fischer, R.; Del Pozzo, L.; Kaul, F.; Krebs, S.; Fischer, R.; Rivier, J.E.; Reubi, J.C.; Maecke, H.R.; Weber, W.A. Comparison of somatostatin receptor agonist and antagonist for peptide receptor radionuclide therapy: A pilot study. J. Nucl. Med., 2014, 55, 1248-1252.
[42]
Wild, D.; Fani, M.; Behe, M.; Brink, I.; Rivier, J.E.; Reubi, J.C.; Maecke, H.R.; Weber, W.A. First clinical evidence that imaging with somatostatin receptor antagonists is feasible. J. Nucl. Med., 2011, 52, 1412-1417.
[43]
Garin, E.; Le Jeune, F.; Devillers, A.; Cuggia, M.; de Lajarte-Thirouard, A.S.; Bouriel, C.; Boucher, E.; Raoul, J.L. Predictive value of 18F-FDG PET and somatostatin receptor scintigraphy in patients with metastatic endocrine tumors. J. Nucl. Med., 2009, 50, 858-864.
[44]
Has Simsek, D.; Kuyumcu, S.; Turkmen, C.; Sanlı, Y.; Aykan, F.; Unal, S.; Adalet, I. Can complementary 68Ga-DOTATATE and 18F-FDG PET/CT establish the missing link between histopathology and therapeutic approach in gastroenteropancreatic neuroendocrine tumors? J. Nucl. Med., 2014, 55, 1811-1817.
[45]
Heiss, W.D.; Wienhard, K.; Wagner, R.; Lanfermann, H.; Thiel, A.; Herholz, K.; Pietrzyk, U. F-Dopa as an amino acid tracer to detect brain tumors. J. Nucl. Med., 1996, 37(7), 1180-1182.
[46]
Tessonnier, L.; Sebag, F.; Ghander, C.; De Micco, C.; Reynaud, R.; Palazzo, F.F.; Conte-Devolx, B.; Henry, J.F.; Mundler, O.; Taïeb, D. Limited value of 18F-F-DOPA PET to localize pancreatic insulin-secreting tumors in adults with hyperinsulinemic hypoglycemia. J. Clin. Endocrinol. Metab., 2010, 95, 303-307.
[47]
Schiesser, M.; Veit-Haibach, P.; Muller, M.K.; Weber, M.; Bauerfeind, P.; Hany, T.; Clavien, P.A. Value of combined 6-[18F]fluorodihydroxyphenylalanine PET/CT for imaging of neuroendocrine tumours. Br. J. Surg., 2010, 97(5), 691-697.
[48]
Ambrosini, V.; Tomassetti, P.; Castellucci, P.; Campana, D.; Montini, G.; Rubello, D.; Nanni, C.; Rizzello, A.; Franchi, R.; Fanti, S. Comparison between 68Ga-DOTA-NOC and 18F-DOPA PET for the detection of gastro-entero-pancreatic and lung neuro-endocrine tumours. Eur. J. Nucl. Med. Mol. Imaging, 2008, 35(8), 1431-1438.
[49]
Ambrosini, V.; Rubello, D.; Nanni, C.; Al-Nahhas, A.; Fanti, S. 68Ga-DOTA-peptides versus 18F-DOPA PET for the assessment of NET patients. Nucl. Med. Commun., 2008, 29(5), 415-417.
[50]
Haug, A.; Auernhammer, C.J.; Wängler, B.; Tiling, R.; Schmidt, G.; Göke, B.; Bartenstein, P.; Pöpperl, G. Intraindividual comparison of 68Ga-DOTA-TATE and 18F-DOPA PET in patients with well-differentiated metastatic neuroendocrine tumours. Eur. J. Nucl. Med. Mol. Imaging, 2009, 36, 765-770.
[51]
Kratochwil, C.; Stefanova, M.; Mavriopoulou, E.; Holland-Letz, T.; Dimitrakopoulou-Strauss, A.; Afshar-Oromieh, A.; Mier, W.; Haberkorn, U.; Giesel, F.L. SUV of [68Ga]-DOTATOC PET/CT predicts response probability of PRRT in neuroendocrine tumors. Mol. Imaging Biol., 2015, 17, 313-318.
[52]
Haug, A.R.; Auernhammer, C.J.; Wängler, B.; Schmidt, G.P.; Uebleis, C.; Göke, B.; Cumming, P.; Bartenstein, P.; Tiling, R.; Hacker, M. 68Ga-DOTATATE PET/CT for the early prediction of response to somatostatin receptor-mediated radionuclide therapy in patients with well-differentiated neuroendocrine tumors. J. Nucl. Med., 2010, 51, 1349-1356.
[53]
Partelli, S.; Bertani, E.; Bartolomei, M.; Perali, C.; Muffatti, F.; Grana, C.M. Schiavo, Lena, M.; Doglioni, C.; Crippa, S.; Fazio, N.; Zamboni, G.; Falconi, M. Peptide receptor radionuclide therapy as neoadjuvant therapy for resectable or potentially resectable pancreatic neuroendocrine neoplasms. Surgery, 2018, 163(4), 761-767.
[54]
Wessels, B.W.; Meares, C.F. Physical and Chemical Properties of Radionuclide Therapy. Semin. Radiat. Oncol., 2000, 110(2), 115-122.
[55]
Gulenchyn, K.Y.; Yaoy, X.; Asa, S.L.; Singh, S.; Law, C. Radionuclide Therapy in Neuroendocrine Tumours: A Systematic Review. Clin. Oncol., 2012, 24, 294-308.
[56]
Krenning, E.P.; Kwekkeboom, D.J.; Bakker, W.H.; Breeman, W.A.; Kooij, P.P.; Oei, H.Y.; van Hagen, M.; Postema, P.T.; de Jong, M.; Reubi, J.C.; Visser, T.J.; Reijs, A.E.M.; Holland, L.J.; Koper, J.W.; Lamberts, S.W.J. Somatostatin receptor scintigraphy with [111In-DTPA-D-Phe1]- and [123I-Tyr3]-octreotide: the Rotterdam experience with more than 1000 patients. Eur. J. Nucl. Med., 1993, 20(8), 716-731.
[57]
Nicolas, G.; Giovacchini, G.; Müller-Brand, J.; Forrer, F. Targeted Radiotherapy with Radiolabeled Somatostatin Analogs. Endocrinol. Metab. Clin. North Am., 2011, 40, 187-204.
[58]
Limouris, G.S.; Poulantzas, V.; Trompoukis, N.; Karfis, I.; Chondrogiannis, S.; Triantafyllou, N.; Gennimata, V.; Moulopoulou, L.E.; Patsouris, E.; Nikou, G.; Michalaki, V.; Fragulidis, G.; Paphiti, M.; McCready, R.V.; Colletti, P.M.; Cook, G.J.; Rubello, D. Comparison of 111In-[DTPA0]Octreotide Versus Non Carrier Added 177Lu-[DOTA0,Tyr3]-Octreotate Efficacy in Patients With GEP-NET Treated Intra-arterially for Liver Metastases. Clin. Nucl. Med., 2016, 41(3), 194-200.
[59]
Ozkan, E.; Tokmak, E.; Kucuk, N.O. Efficacy of adding high-dose In-111 octreotide therapy during Sandostatin treatment in patients with disseminated neuroendocrine tumors: Clinical results of 14 patients. Ann. Nucl. Med., 2011, 25(6), 425-4231.
[60]
De Jong, M.; Valkema, R.; Jamar, F.; Kvols, L.K.; Kwekkeboom, D.J.; Breeman, W.A.; Bakker, W.H.; Smith, C.; Pauwels, S.; Krenning, E.P. Somatostatin receptor-targeted radionuclide therapy of tumors: preclinical and clinical findings. Semin. Nucl. Med., 2002, 32, 133-140.
[61]
Kwekkeboom, D.J.; Mueller-Brand, J.; Paganelli, G.; Anthony, L.B.; Pauwels, S.; Kvols, L.K.; O’dorisio, T.M.; Valkema, R.; Bodei, L.; Chinol, M.; Maecke, H.R.; Krenning, E.P. An overview of the results of peptide receptor radionuclide therapy with 3 different radiolabelled somatostatin analogues. J. Nucl. Med., 2005, 46, 62S-66S.
[62]
Cremonesi, M.; Botta, F.; Di Dia, A.; Ferrari, M.; Bodei, L.; De Cicco, C.; Rossi, A.; Bartolomei, M.; Mei, R.; Severi, S.; Salvatori, M.; Pedroli, G.; Paganelli, G. Dosimetry for treatment with radiolabelled somatostatin analogues. A review. Q. J. Nucl. Med. Mol. Imaging, 2010, 54, 37-51.
[63]
Valkema, R.; Pauwels, S.A.; Kvols, L.K.; Kwekkeboom, D.J. jamar, F. de Jong, M.; Barone, R.; Walrand, S.; Kooij, P.P.; Bakker, W.H.; Lasher, J.; Krenning, E.P. Long term follow-up of renal function after peptide receptor radiation therapy with (90)Y-DOTA(0),Tyr(3)-octreotide and (177)Lu-DOTA(0), Tyr(3)-octreotate. J. Nucl. Med., 2005, 46(Suppl. 1), 83S-91S.
[64]
Bodei, L.; Cremonesi, M.; Zoboli, S.; Grana, C.M.; Bartolomei, M.; Rocca, P.; Caracciolo, M.; Mäcke, H.R.; Chinol, M.; Paganelli, G. Receptor-mediated radionuclide therapy with 90Y-DOTATOCin association with amino acid infusion: A phase I study. Eur. J. Nucl. Med., 2003, 30, 207-216.
[65]
Bodei, L.; Cremonesi, M.; Ferrari, M.; Pacifici, M.; Grana, C.M.; Bartolomei, M.; Baio, S.M.; Sansovini, M.; Paganelli, G. Long term evaluation of renal toxicitiy after peptide receptor radionuclide therapy with 90Y-DOTATOC and 177Lu-DOTATATE: The role of associated risk factors. Eur. J. Nucl. Med. Mol. Imaging, 2008, 35(10), 1847-1856.
[66]
Imhof, A.; Brunner, P.; Marincek, N.; Briel, M.; Schindler, C.; Rasch, H.; Mäcke, H.R.; Rochlitz, C.; Müller-Brand, J.; Walter, M.A. Response, survival, and long-term toxicity after therapy with the radiolabeled somatostatin analogue [90Y-DOTA]-TOC in metastasized neuroendocrine cancers. J. Clin. Oncol., 2011, 29, 2416-2423.
[67]
Sansovini, M.; Severi, S.; Ambrosetti, A.; Monti, M.; Nanni, O.; Sarnelli, A.; Bodei, L.; Garaboldi, L.; Bartolomei, M.; Paganelli, G. Treatment with the radiolabelled somatostatin analog Lu-DOTATATE for advanced pancreatic neuroendocrine tumors. Neuroendocrinology, 2013, 97, 347-354.
[68]
Ezziddin, S.; Khalaf, F.; Vanezi, M.; Haslerud, T.; Mayer, K.; Al Zreiqat, A.; Willinek, W.; Biersack, H.J.; Sabet, A. Outcome of peptide receptor radionuclide therapy with 177Lu-octreotate in advanced grade 1/2 pancreatic neuroendocrine tumors. Eur. J. Nucl. Med. Mol. Imaging, 2014, 41, 925-933.
[69]
Eng, J.; Kleinman, W.A.; Singh, L.; Singh, G.; Raufman, J.P. Isolation and characterization of exendin-4, an exendin-3 analogue, from Heloderma suspectum venom. Further evidence for an exendin receptor on dispersed acini from guinea pig pancreas. J. Biol. Chem., 1992, 267(11), 7402-7405.
[70]
Kratochwil, C.; Giesel, F.L. Nuklearmedizinische therapie endokriner tumoren. Der Radiologe, 2014, 1-9.
[71]
Wild, D.; Mäcke, H.; Gloor, B.; Reubi, J.C. Glucagon-like peptide
1-receptor scans to localize occult insulinomas. N. Engl. J. Med., 2008, 14, 359(7), 766-768.
[72]
Christ, E.; Wild, D.; Forrer, F.; Brandle, M.; Sahli, R.; Clerici, T.; Gloor, B.; Martius, F.; Maecke, H.; Reubi, J.C. Glucagon-like peptide-1 receptor imaging for localization of insulinomas. J. Clin. Endocrinol. Metab., 2009, 94(11), 4398-4405.
[73]
Christ, E.; Wild, D.; Ederer, S.; Behe, M.; Nicolas, G.; Caplin, M.E.; Brändle, M.; Clerici, T.; Fischli, S.; Stettler, C.; Ell, P.J.; Seufert, J.; Gloor, B.; Perren, A.; Reubi, J.C.; Forrer, F. Glucagon-like peptide-1 receptor imaging for the localisation of insulinomas: a prospective multicentre imaging study. Lancet Diabetes Endocrinol., 2013, 1(2), 115-122.
[74]
Sowa-Staszczak, A.; Pach, D.; Mikolajczak, R.; Mäcke, H.; Jabrocka-Hybel, A.; Stefańska, A.; Tomaszuk, M.; Janota, B.; Gilis-Januszewska, A.; Małecki, M.; Kamiński, G.; Kowalska, A.; Kulig, J.; Matyja, A.; Osuch, C.; Hubalewska-Dydejczyk, A. Glucagon-like peptide-1 receptor imaging with [Lys40(Ahx-HYNIC-99mTc/EDDA)NH2]-exendin-4 for the detection of insulinoma. Eur. J. Nucl. Med. Mol. Imaging, 2013, 40, 524-531.
[75]
Eriksson, O.; Velikyan, I.; Selvaraju, R.K.; Kandeel, F.; Johansson, L.; Antoni, G.; Eriksson, B.; Sörensen, J.; Korsgren, O. Detection of metastatic insulinoma by positron emission tomography with [(68)Ga]exendin-4. A case report. J. Clin. Endocrinol. Metab., 2014, 99, 1519-1524.
[76]
Antwi, K.; Fani, M.; Nicolas, G.; Rottenburger, C.; Heye, T.; Reubi, J.C.; Gloor, B.; Christ, E.; Wild, D. Localization of hidden insulinomas with 68Ga-DOTA-Exendin-4 PET/CT: A pilot study. J. Nucl. Med., 2015, 56, 1075-1078.
[77]
Antwi, K.; Fani, M.; Nicolas, G.; Rottenburger, C.; Heye, T.; Reubi, J.C.; Gloor, B.; Christ, E.; Wild, D. Localization of hidden insulinomas with (68)Ga-DOTA-Exendin-4 PET/CT: A Pilot Study. J. Nucl. Med., 2015, 56(7), 1075-1078.
[78]
Bauman, A. Valverde, I.E.; Fischer, C.A.; Vomstein, S.; Mindt T.L. Development of 68Ga- and 89Zr-Labeled Exendin-4 as Potential Radiotracers for the Imaging of Insulinomas by PET. J. Nucl. Med., 2015, 56, 1569-1574.
[79]
Goke, R.; Fehmann, H.C.; Linn, T.; Schmidt, H.; Krause, M.; Eng, J.; Göke, B. Exendin-4 is a high potency agonist and truncated exendin-(9±39)-amide an antagonist at the glucagon-like peptide 1-(7±36)-amide receptor of insulin-secreting beta-cells. J. Biol. Chem., 1993, 268, 19650-1965.
[80]
Vaidyanathan, G.; Zalutsky, M.R. Protein radiohalogenation: observations on the design of N-succinimidyl ester acylation agents. Bioconjug. Chem., 1990, 1, 269-273.
[81]
Lappchen, T.; Tonnesmann, R.; Eersels, J.; Meyer, P.T.; Maecke, H.R.; Rylova, S.N. Radioiodinated Exendin-4 Is Superior to the Radiometal-Labelled Glucagon-Like Peptide-1 Receptor Probes Overcoming Their High Kidney Uptake. PLoS One, 2017, 12(1), 1-16.