Generic placeholder image

Current Protein & Peptide Science

Editor-in-Chief

ISSN (Print): 1389-2037
ISSN (Online): 1875-5550

Review Article

Crosstalk between the CX3CL1/CX3CR1 Axis and Inflammatory Signaling Pathways in Tissue Injury

Author(s): Quan Zhuang, Jiarui Ou, Sheng Zhang and Yingzi Ming*

Volume 20, Issue 8, 2019

Page: [844 - 854] Pages: 11

DOI: 10.2174/1389203720666190305165722

Price: $65

Abstract

During inflammation, chemokines play a central role by mediating the activation of inflammatory cascade responses in tissue injury. Among more than 200 chemokines, CX3CL1 is a special chemotactic factor existing in both membrane-bound and soluble forms. Its only receptor, CX3CR1, is a member of the G protein-coupled receptor superfamily. The CX3CL1/CX3CR1 axis can affect many inflammatory processes by communicating with different inflammatory signaling pathways, such as JAK-STAT, Toll-like receptor, MAPK, AKT, NF-κB, Wnt/β-catenin, as well as others. These inflammatory networks are involved in much pathology. Determining the crosstalk between the CX3CL1/CX3CR1 axis and these inflammatory signaling pathways could contribute to solving problems in tissue injury, and the CX3CL1/CX3CR1 axis may be a better therapeutic target than inflammatory signaling pathways for preventing tissue injury due to the complexity of inflammatory signaling networks.

Keywords: CX3CL1, CX3CR1, inflammatory signaling pathway, tissue injury, chemokines, pathology.

« Previous
Graphical Abstract

[1]
Martinez-Munoz, L.; Villares, R.; Rodriguez-Fernandez, J.L.; Rodriguez-Frade, J.M.; Mellado, M. Remodeling our concept of chemokine receptor function: From monomers to oligomers. J. Leukoc. Biol., 2018, 104(2), 323-331.
[2]
Imai, T.; Hieshima, K.; Haskell, C.; Baba, M.; Nagira, M.; Nishimura, M.; Kakizaki, M.; Takagi, S.; Nomiyama, H.; Schall, T.J.; Yoshie, O. Identification and molecular characterization of fractalkine receptor CX3CR1, which mediates both leukocyte migration and adhesion. Cell, 1997, 91(4), 521-530.
[3]
White, G.E.; Greaves, D.R. Fractalkine: A survivor’s guide: Chemokines as antiapoptotic mediators. Arterioscler. Thromb. Vasc. Biol., 2012, 32(3), 589-594.
[4]
Zhuang, Q.; Cheng, K.; Ming, Y. CX3CL1/CX3CR1 axis, as the therapeutic potential in renal diseases: Friend or foe?. Curr Gene Ther, 2017, 17(6), 442-452.
[5]
Jones, B.A.; Riegsecker, S.; Rahma, A.; Beamer, M.; Aboualaiwi, W.; Khuder, S.A.; Ahmed, S. Role of ADAM-17, p38 MAPK, cathepsins, and the proteasome pathway in the synthesis and shedding of fractalkine/CX(3) CL1 in rheumatoid arthritis. Arthritis Rheum., 2013, 65(11), 2814-2825.
[6]
Apostolakis, S.; Spandidos, D. Chemokines and atherosclerosis: Focus on the CX3CL1/CX3CR1 pathway. Acta Pharmacol. Sin., 2013, 34(10), 1251-1256.
[7]
Flierl, U.; Bauersachs, J.; Schafer, A. Modulation of platelet and monocyte function by the chemokine fractalkine (CX3 CL1) in cardiovascular disease. Eur. J. Clin. Invest., 2015, 45(6), 624-633.
[8]
Julia, V.; Staumont-Salle, D.; Dombrowicz, D. Role of fractalkine/CX3CL1 and its receptor CX3CR1 in allergic diseases. Med. Sci. (Paris), 2016, 32(3), 260-266.
[9]
Nishimura, M.; Umehara, H.; Nakayama, T.; Yoneda, O.; Hieshima, K.; Kakizaki, M.; Dohmae, N.; Yoshie, O.; Imai, T. Dual functions of fractalkine/CX3C ligand 1 in trafficking of perforin+/granzyme B+ cytotoxic effector lymphocytes that are defined by CX3CR1 expression. J. Immunol., 2002, 168(12), 6173-6180.
[10]
Lee, M.; Lee, Y.; Song, J.; Lee, J.; Chang, S.Y. Tissue-specific role of CX3CR1 expressing immune cells and their relationships with human disease. Immune Netw., 2018, 18(1), e5.
[11]
Kotas, M.E.; Medzhitov, R. Homeostasis, inflammation, and disease susceptibility. Cell, 2015, 160(5), 816-827.
[12]
Wu, X.M.; Liu, Y.; Qian, Z.M.; Luo, Q.Q.; Ke, Y. CX3CL1/CX3CR1 axis plays a key role in ischemia-induced oligodendrocyte injury via p38MAPK signaling pathway. Mol. Neurobiol., 2016, 53(6), 4010-4018.
[13]
Li, C.; He, J.; Zhong, X.; Gan, H.; Xia, Y. CX3CL1/CX3CR1 axis contributes to angiotensin II-induced vascular smooth muscle cell proliferation and inflammatory cytokine production. Inflammation, 2018, 41(3), 824-834.
[14]
Hussain, S.; Mansouri, S.; Sjoholm, A.; Patrone, C.; Darsalia, V. Evidence for cortical neuronal loss in male type 2 diabetic Goto-Kakizaki rats. J. Alzheimers Dis., 2014, 41(2), 551-560.
[15]
Fraticelli, P.; Sironi, M.; Bianchi, G.; D’Ambrosio, D.; Albanesi, C.; Stoppacciaro, A.; Chieppa, M.; Allavena, P.; Ruco, L.; Girolomoni, G.; Sinigaglia, F.; Vecchi, A.; Mantovani, A. Fractalkine (CX3CL1) as an amplification circuit of polarized Th1 responses. J. Clin. Invest., 2001, 107(9), 1173-1181.
[16]
Yang, X.P.; Mattagajasingh, S.; Su, S.; Chen, G.; Cai, Z.; Fox-Talbot, K.; Irani, K.; Becker, L.C. Fractalkine upregulates intercellular adhesion molecule-1 in endothelial cells through CX3CR1 and the Jak Stat5 pathway. Circ. Res., 2007, 101(10), 1001-1008.
[17]
Pirvulescu, M.M.; Gan, A.M.; Stan, D.; Simion, V.; Calin, M.; Butoi, E.; Manduteanu, I. Subendothelial resistin enhances monocyte transmigration in a co-culture of human endothelial and smooth muscle cells by mechanisms involving fractalkine, MCP-1 and activation of TLR4 and Gi/o proteins signaling. Int. J. Biochem. Cell Biol., 2014, 50, 29-37.
[18]
Liu, H.; Jiang, D. Fractalkine/CX3CR1 and atherosclerosis. Clin. Chim. Acta, 2011, 412(13-14), 1180-1186.
[19]
Lee, S.; Xu, G.; Jay, T.R.; Bhatta, S.; Kim, K.W.; Jung, S.; Landreth, G.E.; Ransohoff, R.M.; Lamb, B.T. Opposing effects of membrane-anchored CX3CL1 on amyloid and tau pathologies via the p38 MAPK pathway. J. Neurosci., 2014, 34(37), 12538-12546.
[20]
Oberbarnscheidt, M.H.; Lakkis, F.G. Innate allorecognition. Immunol. Rev., 2014, 258(1), 145-149.
[21]
Ospelt, C.; Gay, S. TLRs and chronic inflammation. Int. J. Biochem. Cell Biol., 2010, 42(4), 495-505.
[22]
Tiberio, L.; Del Prete, A.; Schioppa, T.; Sozio, F.; Bosisio, D.; Sozzani, S. Chemokine and chemotactic signals in dendritic cell migration. Cell. Mol. Immunol., 2018, 15(4), 346-352.
[23]
Zhuang, Q.; Lakkis, F.G. Dendritic cells and innate immunity in kidney transplantation. Kidney Int., 2015, 87(4), 712-718.
[24]
Nanki, T.; Imai, T.; Kawai, S. Fractalkine/CX3CL1 in rheumatoid arthritis. Mod. Rheumatol., 2017, 27(3), 392-397.
[25]
Ji, R.R.; Xu, Z.Z.; Gao, Y.J. Emerging targets in neuroinflammation-driven chronic pain. Nat. Rev. Drug Discov., 2014, 13(7), 533-548.
[26]
Li, Z.Y.; Chao, H.H.; Liu, H.Y.; Song, Z.H.; Li, L.L.; Zhang, Y.J.; Yang, Y.; Peng, J.P. IFN-gamma induces aberrant CD49b(+) NK cell recruitment through regulating CX3CL1: A novel mechanism by which IFN-gamma provokes pregnancy failure. Cell Death Dis., 2014, 5, e1512.
[27]
Kok, S.H.; Hong, C.Y.; Kuo, M.Y.; Wang, C.C.; Hou, K.L.; Lin, Y.T.; Galson, D.L.; Lin, S.K. Oncostatin M-induced CCL2 transcription in osteoblastic cells is mediated by multiple levels of STAT-1 and STAT-3 signaling: An implication for the pathogenesis of arthritis. Arthritis Rheum., 2009, 60(5), 1451-1462.
[28]
Pelletier, S.; Duhamel, F.; Coulombe, P.; Popoff, M.R.; Meloche, S. Rho family GTPases are required for activation of Jak/STAT signaling by G protein-coupled receptors. Mol. Cell. Biol., 2003, 23(4), 1316-1333.
[29]
Ahr, B.; Denizot, M.; Robert-Hebmann, V.; Brelot, A.; Biard-Piechaczyk, M. Identification of the cytoplasmic domains of CXCR4 involved in Jak2 and STAT3 phosphorylation. J. Biol. Chem., 2005, 280(8), 6692-6700.
[30]
Zhang, Y.; Zheng, J.; Zhou, Z.; Zhou, H.; Wang, Y.; Gong, Z.; Zhu, J. Fractalkine promotes chemotaxis of bone marrow-derived mesenchymal stem cells towards ischemic brain lesions through Jak2 signaling and cytoskeletal reorganization. FEBS J., 2015, 282(5), 891-903.
[31]
Ran, L.; Yu, Q.; Zhang, S.; Xiong, F.; Cheng, J.; Yang, P.; Xu, J.F.; Nie, H.; Zhong, Q.; Yang, X.; Yang, F.; Gong, Q.; Kuczma, M.; Kraj, P.; Gu, W.; Ren, B.X.; Wang, C.Y. Cx3cr1 deficiency in mice attenuates hepatic granuloma formation during acute schistosomiasis by enhancing the M2-type polarization of macrophages. Dis. Model. Mech., 2015, 8(7), 691-700.
[32]
Atri, C.; Guerfali, F.Z.; Laouini, D. Role of human macrophage polarization in inflammation during infectious diseases. Int. J. Mol. Sci., 2018, 19(6), 1801.
[33]
Liu, R.; Qi, H.; Wang, J.; Wang, Y.; Cui, L.; Wen, Y.; Yin, C. Angiotensin-converting enzyme (ACE and ACE2) imbalance correlates with the severity of cerulein-induced acute pancreatitis in mice. Exp. Physiol., 2014, 99(4), 651-663.
[34]
Huang, L.Y.; Chen, P.; Xu, L.X.; Zhou, Y.F.; Zhang, Y.P.; Yuan, Y.Z. Fractalkine upregulates inflammation through CX3CR1 and the Jak-Stat pathway in severe acute pancreatitis rat model. Inflammation, 2012, 35(3), 1023-1030.
[35]
Vijay, K. Toll-like receptors in immunity and inflammatory diseases: Past, present, and future. Int. Immunol., 2018, 59, 391-412.
[36]
Nahid, M.A.; Satoh, M.; Chan, E.K. MicroRNA in TLR signaling and endotoxin tolerance. Cell. Mol. Immunol., 2011, 8(5), 388-403.
[37]
Kawanishi, S.; Takata, K.; Itezono, S.; Nagayama, H.; Konoya, S.; Chisaki, Y.; Toda, Y.; Nakata, S.; Yano, Y.; Kitamura, Y.; Ashihara, E. Bone-marrow-derived microglia-like cells ameliorate brain amyloid pathology and cognitive impairment in a mouse model of Alzheimer’s disease. J. Alzheimers Dis., 2018, 64(2), 563-585.
[38]
Caldeira, C.; Cunha, C.; Vaz, A.R.; Falcao, A.S.; Barateiro, A.; Seixas, E.; Fernandes, A.; Brites, D. Key aging-associated alterations in primary microglia response to beta-amyloid stimulation. Front. Aging Neurosci., 2017, 9, 277.
[39]
Shimoda, S.; Selmi, C.; Gershwi, M.E. Fractalkine and other chemokines in primary biliary cirrhosis. Int. J. Hepatol., 2012, 2012, 102839.
[40]
Chinnery, H.R.; Leong, C.M.; Chen, W.; Forrester, J.V.; McMenamin, P.G. TLR9 and TLR7/8 activation induces formation of keratic precipitates and giant macrophages in the mouse cornea. J. Leukoc. Biol., 2015, 97(1), 103-110.
[41]
Shah, R.; Hinkle, C.C.; Ferguson, J.F.; Mehta, N.N.; Li, M.; Qu, L.; Lu, Y.; Putt, M.E.; Ahima, R.S.; Reilly, M.P. Fractalkine is a novel human adipochemokine associated with type 2 diabetes. Diabetes, 2011, 60(5), 1512-1518.
[42]
Devevre, E.F.; Renovato-Martins, M.; Clement, K.; Sautes-Fridman, C.; Cremer, I.; Poitou, C. Profiling of the three circulating monocyte subpopulations in human obesity. J. Immunol., 2015, 194(8), 3917-3923.
[43]
Achkar, I.W.; Abdulrahman, N.; Al-Sulaiti, H.; Joseph, J.M.; Uddin, S.; Mraiche, F. Cisplatin based therapy: The role of the mitogen activated protein kinase signaling pathway. J. Transl. Med., 2018, 16(1), 96.
[44]
Liu, Y.; Wu, X.M.; Luo, Q.Q.; Huang, S.; Yang, Q.W.; Wang, F.X.; Ke, Y.; Qian, Z.M. CX3CL1/CX3CR1-mediated microglia activation plays a detrimental role in ischemic mice brain via p38MAPK/PKC pathway. J. Cereb. Blood Flow Metab., 2015, 35(10), 1623-1631.
[45]
Chong, Z.Z.; Li, F.; Maiese, K. Oxidative stress in the brain: Novel cellular targets that govern survival during neurodegenerative disease. Prog. Neurobiol., 2005, 75(3), 207-246.
[46]
Eggen, B.J.; Raj, D.; Hanisch, U.K.; Boddeke, H.W. Microglial phenotype and adaptation. J. Neuroimmune Pharmacol., 2013, 8(4), 807-823.
[47]
Blasi, E.; Barluzzi, R.; Bocchini, V.; Mazzolla, R.; Bistoni, F. Immortalization of murine microglial cells by a v-raf/v-myc carrying retrovirus. J. Neuroimmunol., 1990, 27(2-3), 229-237.
[48]
Jaggi, A.S.; Singh, N. Mechanisms in cancer-chemotherapeutic drugs-induced peripheral neuropathy. Toxicology, 2012, 291(1-3), 1-9.
[49]
Huang, Z.Z.; Li, D.; Liu, C.C.; Cui, Y.; Zhu, H.Q.; Zhang, W.W.; Li, Y.Y.; Xin, W.J. CX3CL1-mediated macrophage activation contributed to paclitaxel-induced DRG neuronal apoptosis and painful peripheral neuropathy. Brain Behav. Immun., 2014, 40, 155-165.
[50]
Xu, J.J.; Diaz, P.; Bie, B.; Astruc-Diaz, F.; Wu, J.; Yang, H.; Browna, D.L.; Naguiba, M. Spinal gene expression profiling and pathways analysis of a CB2 agonist (MDA7)-targeted prevention of paclitaxel-induced neuropathy. Neuroscience, 2014, 260, 185-194.
[51]
Guneli, E.; Onal, A.; Ates, M.; Bagriyanik, H.A.; Resmi, H.; Orhan, C.E.; Kolatan, H.E.; Gumustekinc, M. Effects of repeated administered ghrelin on chronic constriction injury of the sciatic nerve in rats. Neurosci. Lett., 2010, 479(3), 226-230.
[52]
Chacur, M.; Matos, R.J.; Alves, A.S.; Rodrigues, A.C.; Gutierrez, V.; Cury, Y.; Britto, L.R. Participation of neuronal nitric oxide synthase in experimental neuropathic pain induced by sciatic nerve transection. Braz. J. Med. Biol. Res., 2010, 43(4), 367-376.
[53]
Lashley, T.; Schott, J.M.; Weston, P.; Murray, C.E.; Wellington, H.; Keshavan, A.; Foti, S.C.; Foiani, M.; Toombs, J.; Rohrer, J.D.; Heslegrave, A.; Zetterberg, H. Molecular biomarkers of Alzheimer’s disease: Progress and prospects. Dis. Model. Mech., 2018, 11(5), pii: dmm031781.
[54]
Zhang, Y.; Yan, J.; Hu, R.; Sun, Y.; Ma, Y.; Chen, Z.; Jiang, H. Microglia are involved in pruritus induced by DNFB via the CX3CR1/p38 MAPK pathway. Cell. Physiol. Biochem., 2015, 35(3), 1023-1033.
[55]
Liu, Y.; Li, M.; Zhang, Z.; Ye, Y.; Zhou, J. Role of microglia-neuron interactions in diabetic encephalopathy. Ageing Res. Rev., 2018, 42, 28-39.
[56]
Rius, C.; Piqueras, L.; Gonzalez-Navarro, H.; Albertos, F.; Company, C.; Lopez-Gines, C.; Ludwig, A.; Blanes, J.I.; Morcillo, E.J.; Sanz, M.J. Arterial and venous endothelia display differential functional fractalkine (CX3CL1) expression by angiotensin-II. Arterioscler. Thromb. Vasc. Biol., 2013, 33(1), 96-104.
[57]
Zhao, P.; Lieu, T.; Barlow, N.; Metcalf, M.; Veldhuis, N.A.; Jensen, D.D.; Kocan, M.; Sostegni, S.; Haerteis, S.; Baraznenok, V.; Henderson, I.; Lindström, E.; Guerrero-Alba, R.; Valdez-Morales, E.E.; Liedtke, W.; McIntyre, P.; Vanner, S.J.; Korbmacher, C.; Bunnett, N.W. Cathepsin S causes inflammatory pain via biased agonism of PAR2 and TRPV4. J. Biol. Chem., 2014, 289(39), 27215-27234.
[58]
Clark, A.K.; Malcangio, M. Fractalkine/CX3CR1 signaling during neuropathic pain. Front. Cell. Neurosci., 2014, 8, 121.
[59]
Seo, Y.; Kim, H.S.; Kang, I.; Choi, S.W.; Shin, T.H.; Shin, J.H.; Lee, B.C.; Lee, J.Y.; Kim, J.J.; Kook, M.G.; Kang, K.S. Cathepsin S contributes to microglia-mediated olfactory dysfunction through the regulation of Cx3cl1-Cx3cr1 axis in a Niemann-Pick disease type C1 model. Glia, 2016, 64(12), 2291-2305.
[60]
Saika, R.; Sakuma, H.; Noto, D.; Yamaguchi, S.; Yamamura, T.; Miyake, S. MicroRNA-101a regulates microglial morphology and inflammation. J. Neuroinflam., 2017, 14(1), 109.
[61]
Tilly, G.; Doan-Ngoc, T.M.; Yap, M.; Caristan, A.; Jacquemont, L.; Danger, R.; Cadoux, M.; Bruneau, S.; Giral, M.; Guerif, P.; Nicol, B.; Garcia, A.; Laplaud, D.A.; Brouard, S.; Pecqueur, H.C.; Degauque, N. IL-15 harnesses pro-inflammatory function of TEMRA CD8 in kidney-transplant recipients. Front. Immunol., 2017, 8, 778.
[62]
Park, J.; Song, K.H.; Ha, H. Fractalkine increases mesangial cell proliferation through reactive oxygen species and mitogen-activated protein kinases. Transplant. Proc., 2012, 44(4), 1026-1028.
[63]
Volin, M.V.; Huynh, N.; Klosowska, K.; Chong, K.K.; Woods, J.M. Fractalkine is a novel chemoattractant for rheumatoid arthritis fibroblast-like synoviocyte signaling through MAP kinases and Akt. Arthritis Rheum., 2007, 56(8), 2512-2522.
[64]
Wang, Q.; Wang, L.; Wu, L.; Zhang, M.; Hu, S.; Wang, R.; Han, Y.; Wu, Y.; Zhang, L.; Wang, X.; Sun, W.; Wei, W. Paroxetine alleviates T lymphocyte activation and infiltration to joints of collagen-induced arthritis. Sci. Rep., 2017, 7, 45364.
[65]
Rutti, S.; Arous, C.; Schvartz, D.; Timper, K.; Sanchez, J.C.; Dermitzakis, E.; Donath, M.Y.; Halban, P.A.; Bouzakri, K. Fractalkine (CX3CL1), a new factor protecting beta-cells against TNFalpha. Mol. Metab., 2014, 3(7), 731-741.
[66]
Gu, X.; Xu, J.; Yang, X.P.; Peterson, E.; Harding, P. Fractalkine neutralization improves cardiac function after myocardial infarction. Exp. Physiol., 2015, 100(7), 805-817.
[67]
Koundouros, N.; Poulogiannis, G. Phosphoinositide 3-kinase/akt signaling and redox metabolism in cancer. Front. Oncol., 2018, 8, 160.
[68]
Lee, Y.S.; Morinaga, H.; Kim, J.J.; Lagakos, W.; Taylor, S.; Keshwani, M.; Perkins, G.; Dong, H.; Kayali, A.G.; Sweet, I.R.; Olefsky, J. The fractalkine/CX3CR1 system regulates beta cell function and insulin secretion. Cell, 2013, 153(2), 413-425.
[69]
White, G.E.; Tan, T.C.; John, A.E.; Whatling, C.; McPheat, W.L.; Greaves, D.R. Fractalkine has anti-apoptotic and proliferative effects on human vascular smooth muscle cells via epidermal growth factor receptor signalling. Cardiovasc. Res., 2010, 85(4), 825-835.
[70]
Li, D.; Chen, H.; Luo, X.H.; Sun, Y.; Xia, W.; Xiong, Y.C. CX3CR1-mediated akt1 activation contributes to the paclitaxel-induced painful peripheral neuropathy in rats. Neurochem. Res., 2016, 41(6), 1305-1314.
[71]
Puar, Y.R.; Shanmugam, M.K.; Fan, L.; Arfuso, F.; Sethi, G.; Tergaonkar, V. Evidence for the involvement of the master transcription factor NF-kappaB in cancer initiation and progression. Biomedicines, 2018, 6(3), pii: E82.
[72]
Hirai, H.; Roussel, M.F.; Kato, J.Y.; Ashmun, R.A.; Sherr, C.J. Novel INK4 proteins, p19 and p18, are specific inhibitors of the cyclin D-dependent kinases CDK4 and CDK6. Mol. Cell. Biol., 1995, 15(5), 2672-2681.
[73]
Yu, Y.W.; Li, M.X.; Zhang, Z.Y.; Yu, H. The deficiency of CX3CL1/CX3CR1 system ameliorates high fructose diet-induced kidney injury by regulating NF-kappaB pathways in CX3CR1-knock out mice. Int. J. Mol. Med., 2018, 41(6), 3577-3585.
[74]
Hou, S.M.; Hou, C.H.; Liu, J.F. CX3CL1 promotes MMP-3 production via the CX3CR1, c-Raf, MEK, ERK, and NF-kappaB signaling pathway in osteoarthritis synovial fibroblasts. Arthritis Res. Ther., 2017, 19(1), 282.
[75]
Ren, J.; Meng, S.; Yan, B.; Yu, J.; Liu, J. Protectin D1 reduces concanavalin A-induced liver injury by inhibiting NF-kappaB-mediated CX3CL1/CX3CR1 axis and NLR family, pyrin domain containing 3 inflammasome activation. Mol. Med. Rep., 2016, 13(4), 3627-3638.
[76]
Zhou, R.; Gong, A.Y.; Chen, D.; Miller, R.E.; Eischeid, A.N.; Chen, X.M. Histone deacetylases and NF-kB signaling coordinate expression of CX3CL1 in epithelial cells in response to microbial challenge by suppressing miR-424 and miR-503. PLoS One, 2013, 8(5), e65153.
[77]
Lv, B.; Huo, F.; Zhu, Z.; Xu, Z.; Dang, X.; Chen, T.; Zhang, T.; Yang, X. Crocin upregulates CX3CR1 Expression by suppressing NF-kappaB/YY1 signaling and inhibiting lipopolysaccharide-induced microglial activation. Neurochem. Res., 2016, 41(8), 1949-1957.
[78]
Guo, X.; Pan, Y.; Xiao, C.; Wu, Y.; Cai, D.; Gu, J. Fractalkine stimulates cell growth and increases its expression via NF-kappaB pathway in RA-FLS. Int. J. Rheum. Dis., 2012, 15(3), 322-329.
[79]
Ding, X.M.; Pan, L.; Wang, Y.; Xu, Q.Z. Baicalin exerts protective effects against lipopolysaccharide-induced acute lung injury by regulating the crosstalk between the CX3CL1-CX3CR1 axis and NF-kappaB pathway in CX3CL1-knockout mice. Int. J. Mol. Med., 2016, 37(3), 703-715.
[80]
Wang, Z.C.; Li, L.H.; Bian, C.; Yang, L.; Lv, N.; Zhang, Y.Q. Involvement of NF-kappaB and the CX3CR1 signaling network in mechanical allodynia induced by tetanic sciatic stimulation. Neurosci. Bull., 2018, 34(1), 64-73.
[81]
MacDonald, B.T.; Tamai, K.; He, X. Wnt/beta-catenin signaling: Components, mechanisms, and diseases. Dev. Cell, 2009, 17(1), 9-26.
[82]
Weidinger, G.; Thorpe, C.J.; Wuennenberg-Stapleton, K.; Ngai, J.; Moon, R.T. The Sp1-related transcription factors sp5 and sp5-like act downstream of Wnt/beta-catenin signaling in mesoderm and neuroectoderm patterning. Curr. Biol., 2005, 15(6), 489-500.
[83]
Sun, Y.; Wang, F.; Sun, X.; Wang, X.; Zhang, L.; Li, Y. CX3CR1 regulates osteoarthrosis chondrocyte proliferation and apoptosis via Wnt/beta-catenin signaling. Biomed. Pharmacother., 2017, 96, 1317-1323.
[84]
Gong, G.; Hu, L.; Qin, F.; Yin, L.; Yi, X.; Yuan, L.; Wu, W. Spinal WNT pathway contributes to remifentanil induced hyperalgesia through regulating fractalkine and CX3CR1 in rats. Neurosci. Lett., 2016, 633, 21-27.
[85]
Ma, B.; Xu, L.; Pan, X.; Sun, L.; Ding, J.; Xie, C.; Koliatsos, V.E.; Cai, H. LRRK2 modulates microglial activity through regulation of chemokine (C-X3-C) receptor 1 -mediated signalling pathways. Hum. Mol. Genet., 2016, 25(16), 3515-3523.
[86]
Liu, Z.; Lee, J.; Krummey, S.; Lu, W.; Cai, H.; Lenardo, M.J. The kinase LRRK2 is a regulator of the transcription factor NFAT that modulates the severity of inflammatory bowel disease. Nat. Immunol., 2011, 12(11), 1063-1070.
[87]
Martin, I.; Kim, J.W.; Lee, B.D.; Kang, H.C.; Xu, J.C.; Jia, H.; Stankowski, J.; Kim, M.S.; Zhong, J.; Kumar, M.; Andrabi, S.A.; Xiong, Y.; Dickson, D.W.; Wszolek, Z.K.; Pandey, A.; Dawson, T.M.; Dawson, V.L. Ribosomal protein s15 phosphorylation mediates LRRK2 neurodegeneration in Parkinson’s disease. Cell, 2014, 157(2), 472-485.
[88]
Kim, Y.G.; Alvarez, M.; Suzuki, H.; Hirose, S.; Izui, S.; Tomino, Y.; Huard, B.; Suzuki, Y. Pathogenic role of a proliferation-inducing ligand (APRIL) in murine IgA nephropathy. PLoS One, 2015, 10(9), e0137044.
[89]
Fu, J.; Jiao, Y.L.; Li, Z.W.; Ji, Y.H. Spinal 5-HT3AR contributes to BmK I-induced inflammatory pain in rats. Sheng Li Xue Bao, 2015, 67(3), 283-294.
[90]
Gan, A.M.; Butoi, E.D.; Manea, A.; Simion, V.; Stan, D.; Parvulescu, M.M.; Calin, M.; Manduteanu, I.; Simionescu, M. Inflammatory effects of resistin on human smooth muscle cells: up-regulation of fractalkine and its receptor, CX3CR1 expression by TLR4 and Gi-protein pathways. Cell Tissue Res., 2013, 351(1), 161-174.
[91]
Qian, L.; Chen, W.; Wang, S.; Liu, Y.; Jia, X.; Fu, Y.; Gong, W.; Tian, F. FcgammaRIIb attenuates TLR4mediated NFkappaB signaling in B cells. Mol. Med. Rep., 2017, 16(4), 5693-5698.
[92]
Nanki, T.; Urasaki, Y.; Imai, T.; Nishimura, M.; Muramoto, K.; Kubota, T.; Miyasaka, N. Inhibition of fractalkine ameliorates murine collagen-induced arthritis. J. Immunol., 2004, 173(11), 7010-7016.
[93]
Gazerani, S.; Zaringhalam, J.; Manaheji, H.; Golabi, S. The role of C fibers in spinal microglia induction and possible relation with TRPV3 expression during chronic inflammatory arthritis in rats. Basic Clin. Neurosci., 2016, 7(3), 231-240.
[94]
Matsuura, T.; Ichinose, S.; Akiyama, M.; Kasahara, Y.; Tachikawa, N.; Nakahama, K.I. Involvement of CX3CL1 in the migration of osteoclast precursors across osteoblast layer stimulated by interleukin-1ss. J. Cell. Physiol., 2017, 232(7), 1739-1745.
[95]
Ali, M.T.; Martin, K.; Kumar, A.H.; Cavallin, E.; Pierrou, S.; Gleeson, B.M. A novel CX3CR1 antagonist eluting stent reduces stenosis by targeting inflammation. Biomaterials, 2015, 69, 22-29.
[96]
Dorgham, K.; Ghadiri, A.; Hermand, P.; Rodero, M.; Poupel, L.; Iga, M. An engineered CX3CR1 antagonist endowed with anti-inflammatory activity. J. Leukoc. Biol., 2009, 86(4), 903-911.
[97]
Poupel, L.; Boissonnas, A.; Hermand, P.; Dorgham, K.; Guyon, E.; Auvynet, C.; Charles, F.S.; Lesnik, P.; Deterre, P.; Combadiere, C. Pharmacological inhibition of the chemokine receptor, CX3CR1, reduces atherosclerosis in mice. Arterioscler. Thromb. Vasc. Biol., 2013, 33(10), 2297-2305.
[98]
Shen, F.; Zhang, Y.; Jernigan, D.L.; Feng, X.; Yan, J.; Garcia, F.U.; Meucci, O.; Salvino, J.M.; Fatatis, A. Novel small-molecule CX3CR1 antagonist impairs metastatic seeding and colonization of breast cancer cells. Mol. Cancer Res., 2016, 14(6), 518-527.
[99]
Zhou, J.J.; Wang, Y.M.; Lee, V.W.S.; Zhang, G.Y.; Medbury, H.; Williams, H.; Wang, Y.; Tan, T.K.; Harris, D.C.H.; Alexander, S.I.; Durkan, A.M. DEC205-DC targeted DNA vaccine against CX3CR1 protects against atherogenesis in mice. PLoS One, 2018, 13(4), e0195657.
[100]
Todorova, D.; Sabatier, F.; Doria, E.; Lyonnet, L.; Vacher Coponat, H.; Robert, S.; Robert, S.; Despoix, N.; Legris, T.; Moal, V.; Loundou, A.; Morange, S.; Berland, Y.; George, F.D.; Burtey, S.; Paul, P. Fractalkine expression induces endothelial progenitor cell lysis by natural killer cells. PLoS One, 2011, 6(10), e26663.
[101]
Fujita, M.; Takada, Y.K.; Takada, Y. Integrins alphavbeta3 and alpha4beta1 act as coreceptors for fractalkine, and the integrin-binding defective mutant of fractalkine is an antagonist of CX3CR1. J. Immunol., 2012, 189(12), 5809-5819.
[102]
Tanaka, Y.; Takeuchi, T.; Umehara, H.; Nanki, T.; Yasuda, N.; Tago, F.; Kawakubo, M.; Kitahara, Y.; Hojo, S.; Kawano, T.; Imai, T. Safety, pharmacokinetics, and efficacy of E6011, an antifractalkine monoclonal antibody, in a first-in-patient phase 1/2 study on rheumatoid arthritis. Mod. Rheumatol., 2018, 28(1), 58-65.

Rights & Permissions Print Cite
© 2025 Bentham Science Publishers | Privacy Policy