[1]
World Health Organization Regional Office for South-East Asia. Bending the curve - Ending TB. Annual Report, 2017, 2017, 1-76.
[2]
Lu, X.Y.; You, Q.D.; Chen, Y.D. Recent progress in the identification and development of InhA direct inhibitors of Mycobacterium Tuberculosis. Mini Rev. Med. Chem., 2010, 10(3), 182-193.
[3]
North, E.J.; Jackson, M.; Lee, R.E. New approaches to target the mycolic acid biosynthesis pathway for the development of tuberculosis therapeutics. Curr. Pharm. Des., 2014, 20(27), 4357-4378. [http://dx.doi.org/10.2174/1381612819666131118203641]. [PMID: 24245756].
[4]
Zhang, Y.; Xie, L.; Xie, J. Progress on the discovery of inhibitors of InhA, the FAS II Enoyl-ACP reductase TB drug discovery targeted on InhA. Lett. Drug Des. Discov., 2016, 13(6), 539-546. [http://dx.doi.org/10.2174/1570180812666151016205422].
[5]
Pan, P.; Tonge, P.J. Targeting InhA, the FASII enoyl-ACP reductase: SAR studies on novel inhibitor scaffolds. Curr. Top. Med. Chem., 2012, 12(7), 672-693. [http://dx.doi.org/10.2174/ 156802612799984535]. [PMID: 22283812].
[6]
Sullivan, T.J.; Truglio, J.J.; Boyne, M.E.; Novichenok, P.; Zhang, X.; Stratton, C.F.; Li, H-J.; Kaur, T.; Amin, A.; Johnson, F.; Slayden, R.A.; Kisker, C.; Tonge, P.J. High affinity InhA inhibitors with activity against drug-resistant strains of Mycobacterium tuberculosis. ACS Chem. Biol., 2006, 1(1), 43-53. [http://dx.doi.org/ 10.1021/cb0500042]. [PMID: 17163639].
[7]
Freundlich, J.S.; Wang, F.; Vilchèze, C.; Gulten, G.; Langley, R.; Schiehser, G.A.; Jacobus, D.P.; Jacobs, W.R., Jr; Sacchettini, J.C. Triclosan derivatives: towards potent inhibitors of drug-sensitive and drug-resistant Mycobacterium tuberculosis. ChemMedChem, 2009, 4(2), 241-248. [http://dx.doi.org/10.1002/cmdc.200800261]. [PMID: 19130456].
[8]
Stec, J.; Vilchèze, C.; Lun, S.; Perryman, A.L.; Wang, X.; Freundlich, J.S.; Bishai, W.; Jacobs, W.R., Jr; Kozikowski, A.P. Biological evaluation of potent triclosan-derived inhibitors of the enoyl-acyl carrier protein reductase InhA in drug-sensitive and drug-resistant strains of mycobacterium tuberculosis. ChemMedChem, 2014, 9(11), 2528-2537. [http://dx.doi.org/10.1002/cmdc. 201402255]. [PMID: 25165007].
[9]
Pan, P.; Knudson, S.E.; Bommineni, G.R.; Li, H.J.; Lai, C.T.; Liu, N.; Garcia-Diaz, M.; Simmerling, C.; Patil, S.S.; Slayden, R.A.; Tonge, P.J. Time-dependent diaryl ether inhibitors of InhA: Structure-activity relationship studies of enzyme inhibition, antibacterial activity, and in vivo efficacy. ChemMedChem, 2014, 9(4), 776-791. [http://dx.doi.org/10.1002/cmdc.201300429]. [PMID: 24616444].
[10]
Kuo, M.R.; Morbidoni, H.R.; Alland, D.; Sneddon, S.F.; Gourlie, B.B.; Staveski, M.M.; Leonard, M.; Gregory, J.S.; Janjigian, A.D.; Yee, C.; Musser, J.M.; Kreiswirth, B.; Iwamoto, H.; Perozzo, R.; Jacobs, W.R., Jr; Sacchettini, J.C.; Fidock, D.A. Targeting tuberculosis and malaria through inhibition of Enoyl reductase: Compound activity and structural data. J. Biol. Chem., 2003, 278(23), 20851-20859. [http://dx.doi.org/10.1074/jbc.M211968200]. [PMID: 12606558].
[11]
Zanzoul, A.; Chollet, A.; Piedra-Arroni, E.; Stigliani, J-L.; Bernardes-Génisson, V.; Essassi, E.M.; Pratviel, G. Synthesis of an Indoloquinoxaline derivative as potential inhibitor of InhA enzyme of Mycobacterium Tuberculosis. Lett. Org. Chem., 2015, 12(10), 727-733. [http://dx.doi.org/10.2174/1570178612666150924000909].
[12]
He, X.; Alian, A.; Stroud, R.; Ortiz de Montellano, P.R. Pyrrolidine carboxamides as a novel class of inhibitors of enoyl acyl carrier protein reductase from Mycobacterium tuberculosis. J. Med. Chem., 2006, 49(21), 6308-6323. [http://dx.doi.org/10.1021/ jm060715y]. [PMID: 17034137].
[13]
Guardia, A.; Gulten, G.; Fernandez, R.; Gómez, J.; Wang, F.; Convery, M.; Blanco, D.; Martínez, M.; Pérez-Herrán, E.; Alonso, M.; Ortega, F.; Rullás, J.; Calvo, D.; Mata, L.; Young, R.; Sacchettini, J.C.; Mendoza-Losana, A.; Remuiñán, M.; Ballell Pages, L.; Castro-Pichel, J. N-Benzyl-4-((heteroaryl)methyl)benzamides: A new class of direct NADH-dependent 2-trans enoyl-acyl carrier protein reductase (InhA) inhibitors with antitubercular activity. ChemMedChem, 2016, 11(7), 687-701. [http://dx.doi.org/10.1002/ cmdc.201600020]. [PMID: 26934341].
[14]
He, X.; Alian, A.; Ortiz de Montellano, P.R. Inhibition of the Mycobacterium tuberculosis enoyl acyl carrier protein reductase InhA by arylamides. Bioorg. Med. Chem., 2007, 15(21), 6649-6658. [http://dx.doi.org/10.1016/j.bmc.2007.08.013]. [PMID: 17723305].
[15]
Baker, W.R.; Lester, A.M. Indolo [2, 1-Biquinazoline-6, 12-Dione antibacterial compounds and methods of use thereof. US Patent 5,441,955., May 26, 1995.
[16]
Mitscher, L.A.; Baker, W. Tuberculosis: A search for novel therapy starting with natural products. Med. Res. Rev., 1998, 18(6), 363-374. [http://dx.doi.org/10.1002/(SICI)1098-1128(199811)18:6<363:AID-MED1>3.0.CO;2-I]. [PMID: 9828037].
[17]
Hwang, J-M.; Oh, T.; Kaneko, T.; Upton, A.M.; Franzblau, S.G.; Ma, Z.; Cho, S-N.; Kim, P. Design, synthesis, and structure-activity relationship studies of tryptanthrins as antitubercular agents. J. Nat. Prod., 2013, 76(3), 354-367. [http://dx.doi.org/10.1021/ np3007167]. [PMID: 23360475].
[18]
Tripathi, A.; Wadia, N.; Bindal, D.; Jana, T. Docking studies on novel alkaloid tryptanthrin and its analogues against enoyl-acyl carrier protein reductase (InhA) of Mycobacterium tuberculosis. Indian J. Biochem. Biophys., 2012, 49(6), 435-441. [PMID: 23350278].
[19]
Honda, G.; Tabata, M. Isolation of antifungal principle tryptanthrin, from Strobilanthes cusia O. Kuntze. Planta Med., 1979, 36(1), 85-90. [http://dx.doi.org/10.1055/s-0028-1097245]. [PMID: 461559].
[20]
Honda, G.; Tosirisuk, V.; Tabata, M. Isolation of an antidermatophytic, tryptanthrin, from indigo plants, Polygonum tinctorium and Isatis tinctoria. Planta Med., 1980, 38(3), 275-276. [http://dx.doi.org/10.1055/s-2008-1074877]. [PMID: 7367492].
[21]
Bergman, J.; Lindström, J-O.; Tilstam, U.L.F. The structure and properties of some indolic constituents in Couroupita Guianensis Aubl. Tetrahedron, 1985, 41(14), 2879-2881. [http://dx.doi.org/ 10.1016/S0040-4020(01)96609-8].
[22]
Schindler, F.; Zähner, H. Mitteilung tryptanthrin, ein von tryptophan abzuleitendes antibioticum aus dandida lipolytica. Arch. Mikrobiol., 1968, 6(25), 224-239.
[23]
Jahng, Y. Progress in the studies on tryptanthrin, an alkaloid of history. Arch. Pharm. Res., 2013, 36(5), 517-535. [http://dx.doi.org/10.1007/s12272-013-0091-9]. [PMID: 23543631].
[24]
Frisch, M.J.E.A. G. W, Trucks.; Hs B, Schlegel.; G. E, Scuseria.; M. A. Robb, J. R.; Cheeseman, G. S. Gaussian 09, Revision a. 02; Gaussian. Inc.: Wallingford, CT, 2009, p. 200.
[25]
Lee, C.; Yang, W.; Parr, R.G. Development of the Colle-Salvetti correlation-energy formula into a functional of the electron density. Phys. Rev. B Condens. Matter, 1988, 37(2), 785-789. [http://dx.doi.org/10.1103/PhysRevB.37.785]. [PMID: 9944570].
[26]
Becke, A.D. Densityϋfunctional thermochemistry. III. The role of exact exchange. J. Chem. Phys., 1993, 98, 5648-5652. [http://dx.doi.org/10.1063/1.464913].
[27]
Shattuck, T.W. Molecular Operating Environment (MOE). Chemical Computing Group; Canada, 2013.
[28]
Collins, L.; Franzblau, S.G. Microplate alamar blue assay versus BACTEC 460 system for high-throughput screening of compounds against Mycobacterium tuberculosis and Mycobacterium avium. Antimicrob. Agents Chemother., 1997, 41(5), 1004-1009. [http://dx.doi.org/10.1128/AAC.41.5.1004]. [PMID: 9145860].
[29]
Yao, Z-J.; Dong, J.; Che, Y-J.; Zhu, M-F.; Wen, M.; Wang, N-N.; Wang, S.; Lu, A-P.; Cao, D-S. TargetNet: A web service for predicting potential drug-target interaction profiling via multi-target SAR models. J. Comput. Aided Mol. Des., 2016, 30(5), 413-424. [http://dx.doi.org/10.1007/s10822-016-9915-2]. [PMID: 27167132].
[30]
El-Azab, A.S.; Abdel-Aziz, A.A-M.; Al-Swaidan, I.A.; Ng, S.W.; Tiekink, E.R.T. 2-Methyl-sulfanyl-9H-1,3,4-thia-diazolo[2,3-b]quinazolin-9-one. Acta Crystallogr. Sect. E Struct. Rep. Online, 2012, 68(Pt 7), o2134. [http://dx.doi.org/10.1107/ S1600536812026189]. [PMID: 22798810].
[31]
Macaev, F.; Rusu, G.; Pogrebnoi, S.; Gudima, A.; Stingaci, E.; Vlad, L.; Shvets, N.; Kandemirli, F.; Dimoglo, A.; Reynolds, R. Synthesis of novel 5-aryl-2-thio-1,3,4-oxadiazoles and the study of their structure-anti-mycobacterial activities. Bioorg. Med. Chem., 2005, 13(16), 4842-4850. [http://dx.doi.org/10.1016/j.bmc.2005. 05.011]. [PMID: 15993090].
[32]
Macaev, F.; Ribkovskaia, Z.; Pogrebnoi, S.; Boldescu, V.; Rusu, G.; Shvets, N.; Dimoglo, A.; Geronikaki, A.; Reynolds, R. The structure-antituberculosis activity relationships study in a series of 5-aryl-2-thio-1,3,4-oxadiazole derivatives. Bioorg. Med. Chem., 2011, 19(22), 6792-6807. [http://dx.doi.org/10.1016/j.bmc. 2011.09.038]. [PMID: 22001325].
[33]
Pogrebnoi, S.; Chiriţă, C.; Valica, V.; Macaev, F.; Chifiriuc, M.C.; Kamerzan, C.; Uncu, L. Studies on the antimycobacterial action of a novel compound of the thiadiazole class. Farmacia, 2017, 65(1), 69-74.
[34]
Rychtarčíková, Z.; Krátký, M.; Gazvoda, M.; Komlóová, M.; Polanc, S.; Kočevar, M.; Stolaříková, J.; Vinšová, J. N-substituted 2-isonicotinoylhydrazinecarboxamides--new antimycobacterial active molecules. Molecules, 2014, 19(4), 3851-3868. [http://dx.doi.org/ 10.3390/molecules19043851]. [PMID: 24686575].