Generic placeholder image

Mini-Reviews in Medicinal Chemistry

Editor-in-Chief

ISSN (Print): 1389-5575
ISSN (Online): 1875-5607

Review Article

Scaffold Based Search on the Desferithiocin Archetype

Author(s): Mousumi Shyam, Abhimanyu Dev, Barij Nayan Sinha and Venkatesan Jayaprakash*

Volume 19, Issue 19, 2019

Page: [1564 - 1576] Pages: 13

DOI: 10.2174/1389557519666190301151151

Price: $65

Abstract

Iron overload disorder and diseases where iron mismanagement plays a crucial role require orally available iron chelators with favourable pharmacokinetic and toxicity profile. Desferrithiocin (DFT), a tridentate and orally available iron chelator has a favourable pharmacokinetic profile but its use has been clinically restricted due to its nephrotoxic potential. The chemical architecture of the DFT has been naturally well optimized for better iron chelation and iron clearance from human biological system. Equally they are also responsible for its toxicity. Hence, subsequent research has been devoted to develop a non-nephrotoxic analogue of DFT without losing its iron clearance ability.

The review has been designed to classify the compounds reported till date and to discuss the structure activity relationship with reference to modifications attempted at different positions over pyridine and thiazoline ring of DFT. Compounds are clustered under two major classes: (i) Pyridine analogues and (ii) phenyl analogue and further each class has been further subdivided based on the presence or absence and the number of hydroxy functional groups present over pyridine or phenyl ring of the DFT analogues. Finally a summary and few insights into the development of newer analogues are provided.

Keywords: Iron Chelators, siderophores, iron toxicity, fenton’s reaction, desferrithiocin analogues, pyridine analogues.

Graphical Abstract

[1]
Avdeef, A.; Sofen, S.R.; Bregante, T.L.; Raymond, K.N. Coordination chemistry of microbial iron transport compounds. 9. Stability constants for catechol models of enterobactin. J. Am. Chem. Soc., 1978, 100(17), 5362-5370.
[2]
Crichton, R. Intracellular iron storage and biomineralisation. Iron Metabol; From Mol. Mechan. Clin. Consequen, 2009, pp. 183-222.
[3]
Ilbert, M.; Bonnefoy, V. Insight into the evolution of the iron oxidation pathways. BBA-Bioenerget, 2013, 1827(2), 161-175.
[4]
Raymond, K.N.; Carrano, C.J. Coordination chemistry and microbial iron transport. Accounts. Chem. Res., 1979, 12(5), 183-190.
[5]
Neilands, J. Siderophores: Structure and function of microbial iron transport compounds. J. Biol. Chem., 1995, 270(45), 26723-26726.
[6]
Neilands, J. Some aspects of microbial iron metabolism. Bacteriol. Rev., 1957, 21(2), 101.
[7]
Byers, B.; Arceneaux, J. Microbial iron transport: Iron acquisition by pathogenic microorganisms. Met. Ions Biol. Syst., 1998, 35(1), 37-66.
[8]
Conrad, M.E.; Umbreit, J.N.; Moore, E.G. Iron absorption and transport. Am. J. Med. Sci., 1999, 318(4), 213-229.
[9]
Olivieri, N.F.; Brittenham, G.M. Iron-chelating therapy and the treatment of thalassemia. Blood, 1997, 89(3), 739-761.
[10]
Ponka, P.; Beaumont, C.; Richardson, D.R. In Function and regulation of transferrin and ferritin. Semin. Hematol., 1998, 35(1), 35-54.
[11]
Theil, E.C.; Huynh, B.H. Ferritin mineralization: Ferroxidation and beyond. J. Inorg. Biochem., 1997, 67(1), 30.
[12]
Brissot, P.; Ropert, M.; Le Lan, C.; Loréal, O. Non-transferrin bound iron: A key role in iron overload and iron toxicity. BBA-Gen. Sub., 2012, 1820(3), 403-410.
[13]
O’connell, M.; Ward, R.; Baum, H.; Peters, T. The role of iron in ferritin-and haemosiderin-mediated lipid peroxidation in liposomes. Biochem. J., 1985, 229(1), 135-139.
[14]
Ryan, T.P.; Aust, S.D. The role of iron in oxygen-mediated toxicities. Crit. Rev. Toxicol., 1992, 22(2), 119-141.
[15]
Winterbourn, C.C. Toxicity of iron and hydrogen peroxide: The Fenton reaction. Toxicol. Lett., 1995, 82(1), 969-974.
[16]
Dixon, S.J.; Stockwell, B.R. The role of iron and reactive oxygen species in cell death. Nat. Chem. Biol., 2014, 10(1), 9-17.
[17]
Zheng, Y.; Li, X-K.; Wang, Y.; Cai, L. The role of zinc, copper and iron in the pathogenesis of diabetes and diabetic complications: Therapeutic effects by chelators. Hemoglobin, 2008, 32(1-2), 135-145.
[18]
Nemeth, E.; Tuttle, M.S.; Powelson, J.; Vaughn, M.B.; Donovan, A.; Ward, D.M.; Ganz, T.; Kaplan, J. Hepcidin regulates cellular iron efflux by binding to ferroportin and inducing its internalization. Science, 2004, 306(5704), 2090-2093.
[19]
De Valk, B.; Marx, J. Iron, atherosclerosis, and ischemic heart disease. Arch. Intern. Med., 1999, 159(14), 1542-1548.
[20]
Olivieri, N.F.; Brittenham, G.M.; McLaren, C.E.; Templeton, D.M.; Cameron, R.G.; McClelland, R.A.; Burt, A.D.; Fleming, K.A. Long-term safety and effectiveness of iron-chelation therapy with deferiprone for thalassemia major. N. Engl. J. Med., 1998, 339(7), 417-423.
[21]
Altamura, S.; Muckenthaler, M.U. Iron toxicity in diseases of aging: Alzheimer’s disease, Parkinson’s disease and atherosclerosis. J. Alzheimers Dis., 2009, 16(4), 879-895.
[22]
Goncalves, S.; Paupe, V.; Dassa, E.P.; Rustin, P. Deferiprone targets aconitase: Implication for Friedreich’s ataxia treatment. BMC Neurol., 2008, 8(1), 20.
[23]
Wells, R.A.; Leber, B.; Buckstein, R.; Lipton, J.H.; Hasegawa, W.; Grewal, K.; Yee, K.; Olney, H.J.; Larratt, L.; Vickars, L. Iron overload in myelodysplastic syndromes: A Canadian consensus guideline. Leukemia. Res., 2008, 32(9), 1338-1353.
[24]
Ramos, E.; Ruchala, P.; Goodnough, J.B.; Kautz, L.; Preza, G.C.; Nemeth, E.; Ganz, T. Minihepcidins prevent iron overload in a hepcidin-deficient mouse model of severe hemochromatosis. Blood, 2012, 120(18), 3829-3836.
[25]
Britton, R.S.; Leicester, K.L.; Bacon, B.R. Iron toxicity and chelation therapy. Int. J. Hematol., 2002, 76(3), 219-228.
[26]
Bickel, H.; Hall, G.; Keller-Schierlein, W.; Prelog, V.; Vischer, E.; Wettstein, A. Metabolic products of actinomycetes. XXVII. Constitutional formula of ferrioxamine B. Helv. Chim. Acta, 1960, 43(8), 2129-2138.
[27]
Propper, R.D.; Cooper, B.; Rufo, R.R.; Nienhuis, A.W.; Anderson, W.F.; Bunn, H.F.; Rosenthal, A.; Nathan, D.G. Continuous subcutaneous administration of deferoxamine in patients with iron overload. New. Engl. J. Med., 1977, 297(8), 418-423.
[28]
Graziano, J.H.; Markenson, A.; Miller, D.R.; Chang, H.; Bestak, M.; Myers, P.; Pisciotto, P.; Rifkind, A. Chelation therapy in β-thalassemia major I intravenous and subcutaneous deferoxamine. J. Pediatr., 1978, 92(4), 648-652.
[29]
Pippard, M.; Callender, S. The management of iron chelation therapy. Br. J. Haematol., 1983, 54(4), 503-507.
[30]
Aksoy, M.; Seyithanoğlu, B.Y.; Bozbora, A. Thalassaemia and desferrioxamine(®Desferal)-introductory remarks, and clinical and laboratory observations,, 1984, 116-129.
[31]
Peter, H. Industrial aspects of iron chelators: Pharmaceutical applications. Prot. Iron Storage Trans., 1985, 293-303.
[32]
Bergeron, R.J.; Streiff, R.R.; Wiegand, J.; Vinson, J.T.; Luchetta, G.; Evans, K.M.; Peter, H.; Jenny, H.B. A comparative evaluation of iron clearance models. Ann. N. Y. Acad. Sci., 1990, 612(1), 378-393.
[33]
Kirking, M. Treatment of chronic iron overload. Clin. Pharm., 1991, 10(10), 775-783.
[34]
Cox, C.D.; Rinehart, K.L.; Moore, M.L.; Cook, J.C. Pyochelin: novel structure of an iron-chelating growth promoter for Pseudomonas aeruginosa. Proc. Natl. A. Sci., 1981, 78(7), 4256-4260.
[35]
Smith, M. Total synthesis and absolute configuration of rhizobactin, a structurally novel siderophore. Tetrahedron Lett., 1989, 30(3), 313-316.
[36]
Naegeli, H.U.; Zähner, H. Metabolites of microorganisms. Part 193. Ferrithiocin. ChemInform, 1980, 11(51), 1400-1406.
[37]
Anderegg, G.; Räber, M. Metal complex formation of a new siderophore desferrithiocin and of three related ligands. J. Chem. Soc. Chem. Commun., 1990, 1(17), 1194-1196.
[38]
Longueville, A.; Crichton, R.R. An animal model of iron overload and its application to study hepatic ferritin iron mobilization by chelators. Biochem. Pharmacol., 1986, 35(21), 3669-3678.
[39]
Bergeron, R.J.; Wiegand, J.; Dionis, J.B.; Egli-Karmakka, M.; Frei, J.; Huxley-Tencer, A.; Peter, H.H. Evaluation of desferrithiocin and its synthetic analogs as orally effective iron chelators. J. Med. Chem., 1991, 34(7), 2072-2078.
[40]
Bergeron, R.J.; Wiegand, J.; McManis, J.S.; McCosar, B.H.; Weimar, W.R.; Brittenham, G.M.; Smith, R.E. Effects of C-4 stereochemistry and C-4 ‘hydroxylation on the iron clearing efficiency and toxicity of desferrithiocin analogues. J. Med. Chem., 1999, 42(13), 2432-2440.
[41]
Wolfe, L.C.; Nicolosi, R.J.; Renaud, M.M.; Finger, J.; Hegsted, M.; Peter, H.; Nathan, D.G. A non‐human primate model for the study of oral iron chelators. Br. J. Haematol., 1989, 72(3), 456-461.
[42]
Bergeron, R.J.; Streiff, R.R.; Creary, E.A.; Daniels, R.J.; King, W.; Luchetta, G.; Wiegand, J.; Moerker, T.; Peter, H. A comparative study of the iron-clearing properties of desferrithiocin analogues with desferrioxamine B in a Cebus monkey model. Blood, 1993, 81(8), 2166-2173.
[43]
Bergeron, R.J.; Wiegand, J.; Dionis, J.B.; Egli-Karmakka, M.; Frei, J.; Huxley-Tencer, A.; Peter, H.H. Evaluation of desferrithiocin and its synthetic analogues as orally effective iron chelators. J. Med. Chem., 1991, 34(7), 2072-2078.
[44]
Bergeron, R.J.; Liu, C.Z.; McManis, J.S.; Xia, M.X.; Algee, S.E.; Wiegand, J. The desferrithiocin pharmacophore. J. Med. Chem., 1994, 37(10), 1411-1417.
[45]
Bergeron, R.J.; Wiegand, J.; Ratliff-Thompson, K.; Weimar, W.R. The origin of the differences in(R)‐and(S)‐desmethyldesferrithiocin: Iron‐Clearing properties. Ann. N. Y. Acad. Sci., 1998, 850(1), 202-216.
[46]
Bergeron, R.J.; Wiegand, J.; Bharti, N.; McManis, J.S. Substituent effects on desferrithiocin and desferrithiocin analogue iron-clearing and toxicity profiles. J. Med. Chem., 2012, 55(16), 7090-7103.
[47]
Bergeron, R.J.; Wiegand, J.; Wollenweber, M.; McManis, J.S.; Algee, S.E.; Ratliff-Thompson, K. Synthesis and biological evaluation of naphthyldesferrithiocin iron chelators. J. Med. Chem., 1996, 39(8), 1575-1581.
[48]
Bergeron, R.J.; Wiegand, J.; Weimar, W.R.; Vinson, J.T.; Bussenius, J.; Yao, G.W.; McManis, J.S. Desazadesmethyl desferrithiocin analogues as orally effective iron chelators. J. Med. Chem., 1999, 42(1), 95-108.
[49]
Bergeron, R.J.; Liu, C.Z.; McManis, J.S.; Xia, M.; Algee, S.E.; Wiegand, J. The desferrithiocin pharmacophore. J. Med. Chem., 1994, 37(10), 1411-1417.
[50]
Bergeron, R.J.; Weimar, W.R.; Wiegand, J. Pharmacokinetics of orally administered desferrithiocin analogs in Cebus apella primates. Drug Metab. Dispos., 1999, 27(12), 1496-1498.
[51]
Bergeron, R.J.; Wiegand, J.; McManis, J.S.; Bussenius, J.; Smith, R.E.; Weimar, W.R. Methoxylation of desazadesferrithiocin analogues: enhanced iron clearing efficiency. J. Med. Chem., 2003, 46(8), 1470-1477.
[52]
Bergeron, R.J.; Wiegand, J.; McManis, J.S.; Bharti, N.; Singh, S. Desferrithiocin analogues and nephrotoxicity. J. Med. Chem., 2008, 51(19), 5993-6004.
[53]
Bergeron, R.J.; Wiegand, J.; McManis, J.S.; Bharti, N. The design, synthesis, and evaluation of organ-specific iron chelators. J. Med. Chem., 2006, 49(24), 7032-7043.
[54]
Bergeron, R.J.; Wiegand, J.; McManis, J.S.; Bharti, N.; Singh, S. Design, synthesis, and testing of non-nephrotoxic desazades-ferrithiocin polyether analogues. J. Med. Chem., 2008, 51(13), 3913-3923.
[55]
Bergeron, R.J.; Wiegand, J.; McManis, J.S.; Vinson, J.R.; Yao, H.; Bharti, N.; Rocca, J.R. (S)-4, 5-Dihydro-2-(2-hydroxy-4-hydroxyphenyl)-4-methyl-4-thiazolecarboxylic Acid Polyethers: A solution to nephrotoxicity. J. Med. Chem., 2006, 49(9), 2772-2783.
[56]
Bergeron, R.J.; Bharti, N.; Wiegand, J.; McManis, J.S.; Singh, S.; Abboud, K.A. The impact of polyether chain length on the iron clearing efficiency and physiochemical properties of desferrithiocin analogues. J. Med. Chem., 2010, 53(7), 2843-2853.
[57]
Taher, A.T.; Saliba, A.N.; Kuo, K.H.; Giardina, P.J.; Cohen, A.R.; Neufeld, E.J.; Aydinok, Y.; Kwiatkowski, J.L.; Jeglinski, B.I.; Pietropaolo, K. Safety and pharmacokinetics of the oral iron chelator SP‐420 in β‐thalassemia. Am. J. Hematol., 2017, 92(12), 1356-1361.
[58]
Bergeron, R.J.; Wiegand, J.; McManis, J.S.; Weimar, W.R.; Park, J-H.; Eiler-McManis, E.; Bergeron, J.; Brittenham, G.M. Partition-variant desferrithiocin analogues: Organ targeting and increased iron clearance. J. Med. Chem., 2005, 48(3), 821-831.
[59]
Barton, J.C. Drug evaluation: Deferitrin for iron overload disorders. Drugs, 2007, 10(7), 480-490.
[60]
Bergeron, R.J.; Wiegand, J.; Bharti, N.; McManis, J.S.; Singh, S. Desferrithiocin analogue iron chelators: Iron clearing efficiency, tissue distribution, and renal toxicity. Biometals, 2011, 24(2), 239-258.
[61]
Bergeron, R.J.; Wiegand, J.; Weimar, W.R.; McManis, J.S.; Smith, R.E.; Abboud, K.A. Iron chelation promoted by desazadesferrithiocin analogs: An enantioselective barrier. Chirality, 2003, 15(7), 593-599.
[62]
Bergeron, R.J.; Huang, G.; Weimar, W.R.; Smith, R.E.; Wiegand, J.; McManis, J.S. Desferrithiocin analogue based hexacoordinate iron(III) chelators. J. Med. Chem., 2003, 46(1), 16-24.
[63]
Bergeron, R.J.; Wiegand, J.; Bharti, N.; Singh, S.; Rocca, J.R. Impact of the 3, 6, 9-trioxadecyloxy group on desazadesferrithiocin analogue iron clearance and organ distribution. J. Med. Chem., 2007, 50(14), 3302-3313.
[64]
Sheth, S. Iron chelation: An update. Curr. Opin. Hematol., 2014, 21(3), 179-185.
[65]
Rienhoff, H.Y., Jr; Viprakasit, V.; Tay, L.; Harmatz, P.; Vichinsky, E.; Chirnomas, D.; Kwiatkowski, J.; Tapper, A.; Kramer, W.; Porter, J. A phase 1 dose-escalation study: Safety, tolerability, and pharmacokinetics of FBS0701, a novel oral iron chelator for the treatment of transfusional iron overload. Haematologica, 2010, 96(4), 521-525.
[66]
Ma, Y.; Zhou, T.; Kong, X.; Hider, C.R. Chelating agents for the treatment of systemic iron overload. Curr. Med. Chem., 2012, 19(17), 2816-2827.
[67]
Hider, R.C.; Kong, X.; Abbate, V.; Harland, R.; Conlon, K.; Luker, T. Deferitazole, a new orally active iron chelator. Dalton T., 2015, 44(11), 5197-5204.

Rights & Permissions Print Cite
© 2024 Bentham Science Publishers | Privacy Policy