[1]
Avdeef, A.; Sofen, S.R.; Bregante, T.L.; Raymond, K.N. Coordination chemistry of microbial iron transport compounds. 9. Stability constants for catechol models of enterobactin. J. Am. Chem. Soc., 1978, 100(17), 5362-5370.
[2]
Crichton, R. Intracellular iron storage and biomineralisation. Iron Metabol; From Mol. Mechan. Clin. Consequen, 2009, pp. 183-222.
[3]
Ilbert, M.; Bonnefoy, V. Insight into the evolution of the iron oxidation pathways. BBA-Bioenerget, 2013, 1827(2), 161-175.
[4]
Raymond, K.N.; Carrano, C.J. Coordination chemistry and microbial iron transport. Accounts. Chem. Res., 1979, 12(5), 183-190.
[5]
Neilands, J. Siderophores: Structure and function of microbial iron transport compounds. J. Biol. Chem., 1995, 270(45), 26723-26726.
[6]
Neilands, J. Some aspects of microbial iron metabolism. Bacteriol. Rev., 1957, 21(2), 101.
[7]
Byers, B.; Arceneaux, J. Microbial iron transport: Iron acquisition by pathogenic microorganisms. Met. Ions Biol. Syst., 1998, 35(1), 37-66.
[8]
Conrad, M.E.; Umbreit, J.N.; Moore, E.G. Iron absorption and transport. Am. J. Med. Sci., 1999, 318(4), 213-229.
[9]
Olivieri, N.F.; Brittenham, G.M. Iron-chelating therapy and the treatment of thalassemia. Blood, 1997, 89(3), 739-761.
[10]
Ponka, P.; Beaumont, C.; Richardson, D.R. In Function and regulation of transferrin and ferritin. Semin. Hematol., 1998, 35(1), 35-54.
[11]
Theil, E.C.; Huynh, B.H. Ferritin mineralization: Ferroxidation and beyond. J. Inorg. Biochem., 1997, 67(1), 30.
[12]
Brissot, P.; Ropert, M.; Le Lan, C.; Loréal, O. Non-transferrin bound iron: A key role in iron overload and iron toxicity. BBA-Gen. Sub., 2012, 1820(3), 403-410.
[13]
O’connell, M.; Ward, R.; Baum, H.; Peters, T. The role of iron in ferritin-and haemosiderin-mediated lipid peroxidation in liposomes. Biochem. J., 1985, 229(1), 135-139.
[14]
Ryan, T.P.; Aust, S.D. The role of iron in oxygen-mediated toxicities. Crit. Rev. Toxicol., 1992, 22(2), 119-141.
[15]
Winterbourn, C.C. Toxicity of iron and hydrogen peroxide: The Fenton reaction. Toxicol. Lett., 1995, 82(1), 969-974.
[16]
Dixon, S.J.; Stockwell, B.R. The role of iron and reactive oxygen species in cell death. Nat. Chem. Biol., 2014, 10(1), 9-17.
[17]
Zheng, Y.; Li, X-K.; Wang, Y.; Cai, L. The role of zinc, copper and iron in the pathogenesis of diabetes and diabetic complications: Therapeutic effects by chelators. Hemoglobin, 2008, 32(1-2), 135-145.
[18]
Nemeth, E.; Tuttle, M.S.; Powelson, J.; Vaughn, M.B.; Donovan, A.; Ward, D.M.; Ganz, T.; Kaplan, J. Hepcidin regulates cellular iron efflux by binding to ferroportin and inducing its internalization. Science, 2004, 306(5704), 2090-2093.
[19]
De Valk, B.; Marx, J. Iron, atherosclerosis, and ischemic heart disease. Arch. Intern. Med., 1999, 159(14), 1542-1548.
[20]
Olivieri, N.F.; Brittenham, G.M.; McLaren, C.E.; Templeton, D.M.; Cameron, R.G.; McClelland, R.A.; Burt, A.D.; Fleming, K.A. Long-term safety and effectiveness of iron-chelation therapy with deferiprone for thalassemia major. N. Engl. J. Med., 1998, 339(7), 417-423.
[21]
Altamura, S.; Muckenthaler, M.U. Iron toxicity in diseases of aging: Alzheimer’s disease, Parkinson’s disease and atherosclerosis. J. Alzheimers Dis., 2009, 16(4), 879-895.
[22]
Goncalves, S.; Paupe, V.; Dassa, E.P.; Rustin, P. Deferiprone targets aconitase: Implication for Friedreich’s ataxia treatment. BMC Neurol., 2008, 8(1), 20.
[23]
Wells, R.A.; Leber, B.; Buckstein, R.; Lipton, J.H.; Hasegawa, W.; Grewal, K.; Yee, K.; Olney, H.J.; Larratt, L.; Vickars, L. Iron overload in myelodysplastic syndromes: A Canadian consensus guideline. Leukemia. Res., 2008, 32(9), 1338-1353.
[24]
Ramos, E.; Ruchala, P.; Goodnough, J.B.; Kautz, L.; Preza, G.C.; Nemeth, E.; Ganz, T. Minihepcidins prevent iron overload in a hepcidin-deficient mouse model of severe hemochromatosis. Blood, 2012, 120(18), 3829-3836.
[25]
Britton, R.S.; Leicester, K.L.; Bacon, B.R. Iron toxicity and chelation therapy. Int. J. Hematol., 2002, 76(3), 219-228.
[26]
Bickel, H.; Hall, G.; Keller-Schierlein, W.; Prelog, V.; Vischer, E.; Wettstein, A. Metabolic products of actinomycetes. XXVII. Constitutional formula of ferrioxamine B. Helv. Chim. Acta, 1960, 43(8), 2129-2138.
[27]
Propper, R.D.; Cooper, B.; Rufo, R.R.; Nienhuis, A.W.; Anderson, W.F.; Bunn, H.F.; Rosenthal, A.; Nathan, D.G. Continuous subcutaneous administration of deferoxamine in patients with iron overload. New. Engl. J. Med., 1977, 297(8), 418-423.
[28]
Graziano, J.H.; Markenson, A.; Miller, D.R.; Chang, H.; Bestak, M.; Myers, P.; Pisciotto, P.; Rifkind, A. Chelation therapy in β-thalassemia major I intravenous and subcutaneous deferoxamine. J. Pediatr., 1978, 92(4), 648-652.
[29]
Pippard, M.; Callender, S. The management of iron chelation therapy. Br. J. Haematol., 1983, 54(4), 503-507.
[30]
Aksoy, M.; Seyithanoğlu, B.Y.; Bozbora, A. Thalassaemia and
desferrioxamine(®Desferal)-introductory remarks, and clinical and
laboratory observations,, 1984, 116-129.
[31]
Peter, H. Industrial aspects of iron chelators: Pharmaceutical
applications. Prot. Iron Storage Trans., 1985, 293-303.
[32]
Bergeron, R.J.; Streiff, R.R.; Wiegand, J.; Vinson, J.T.; Luchetta, G.; Evans, K.M.; Peter, H.; Jenny, H.B. A comparative evaluation of iron clearance models. Ann. N. Y. Acad. Sci., 1990, 612(1), 378-393.
[33]
Kirking, M. Treatment of chronic iron overload. Clin. Pharm., 1991, 10(10), 775-783.
[34]
Cox, C.D.; Rinehart, K.L.; Moore, M.L.; Cook, J.C. Pyochelin: novel structure of an iron-chelating growth promoter for Pseudomonas aeruginosa. Proc. Natl. A. Sci., 1981, 78(7), 4256-4260.
[35]
Smith, M. Total synthesis and absolute configuration of rhizobactin, a structurally novel siderophore. Tetrahedron Lett., 1989, 30(3), 313-316.
[36]
Naegeli, H.U.; Zähner, H. Metabolites of microorganisms. Part 193. Ferrithiocin. ChemInform, 1980, 11(51), 1400-1406.
[37]
Anderegg, G.; Räber, M. Metal complex formation of a new siderophore desferrithiocin and of three related ligands. J. Chem. Soc. Chem. Commun., 1990, 1(17), 1194-1196.
[38]
Longueville, A.; Crichton, R.R. An animal model of iron overload and its application to study hepatic ferritin iron mobilization by chelators. Biochem. Pharmacol., 1986, 35(21), 3669-3678.
[39]
Bergeron, R.J.; Wiegand, J.; Dionis, J.B.; Egli-Karmakka, M.; Frei, J.; Huxley-Tencer, A.; Peter, H.H. Evaluation of desferrithiocin and its synthetic analogs as orally effective iron chelators. J. Med. Chem., 1991, 34(7), 2072-2078.
[40]
Bergeron, R.J.; Wiegand, J.; McManis, J.S.; McCosar, B.H.; Weimar, W.R.; Brittenham, G.M.; Smith, R.E. Effects of C-4 stereochemistry and C-4 ‘hydroxylation on the iron clearing efficiency and toxicity of desferrithiocin analogues. J. Med. Chem., 1999, 42(13), 2432-2440.
[41]
Wolfe, L.C.; Nicolosi, R.J.; Renaud, M.M.; Finger, J.; Hegsted, M.; Peter, H.; Nathan, D.G. A non‐human primate model for the study of oral iron chelators. Br. J. Haematol., 1989, 72(3), 456-461.
[42]
Bergeron, R.J.; Streiff, R.R.; Creary, E.A.; Daniels, R.J.; King, W.; Luchetta, G.; Wiegand, J.; Moerker, T.; Peter, H. A comparative study of the iron-clearing properties of desferrithiocin analogues with desferrioxamine B in a Cebus monkey model. Blood, 1993, 81(8), 2166-2173.
[43]
Bergeron, R.J.; Wiegand, J.; Dionis, J.B.; Egli-Karmakka, M.; Frei, J.; Huxley-Tencer, A.; Peter, H.H. Evaluation of desferrithiocin and its synthetic analogues as orally effective iron chelators. J. Med. Chem., 1991, 34(7), 2072-2078.
[44]
Bergeron, R.J.; Liu, C.Z.; McManis, J.S.; Xia, M.X.; Algee, S.E.; Wiegand, J. The desferrithiocin pharmacophore. J. Med. Chem., 1994, 37(10), 1411-1417.
[45]
Bergeron, R.J.; Wiegand, J.; Ratliff-Thompson, K.; Weimar, W.R. The origin of the differences in(R)‐and(S)‐desmethyldesferrithiocin: Iron‐Clearing properties. Ann. N. Y. Acad. Sci., 1998, 850(1), 202-216.
[46]
Bergeron, R.J.; Wiegand, J.; Bharti, N.; McManis, J.S. Substituent effects on desferrithiocin and desferrithiocin analogue iron-clearing and toxicity profiles. J. Med. Chem., 2012, 55(16), 7090-7103.
[47]
Bergeron, R.J.; Wiegand, J.; Wollenweber, M.; McManis, J.S.; Algee, S.E.; Ratliff-Thompson, K. Synthesis and biological evaluation of naphthyldesferrithiocin iron chelators. J. Med. Chem., 1996, 39(8), 1575-1581.
[48]
Bergeron, R.J.; Wiegand, J.; Weimar, W.R.; Vinson, J.T.; Bussenius, J.; Yao, G.W.; McManis, J.S. Desazadesmethyl desferrithiocin analogues as orally effective iron chelators. J. Med. Chem., 1999, 42(1), 95-108.
[49]
Bergeron, R.J.; Liu, C.Z.; McManis, J.S.; Xia, M.; Algee, S.E.; Wiegand, J. The desferrithiocin pharmacophore. J. Med. Chem., 1994, 37(10), 1411-1417.
[50]
Bergeron, R.J.; Weimar, W.R.; Wiegand, J. Pharmacokinetics of orally administered desferrithiocin analogs in Cebus apella primates. Drug Metab. Dispos., 1999, 27(12), 1496-1498.
[51]
Bergeron, R.J.; Wiegand, J.; McManis, J.S.; Bussenius, J.; Smith, R.E.; Weimar, W.R. Methoxylation of desazadesferrithiocin analogues: enhanced iron clearing efficiency. J. Med. Chem., 2003, 46(8), 1470-1477.
[52]
Bergeron, R.J.; Wiegand, J.; McManis, J.S.; Bharti, N.; Singh, S. Desferrithiocin analogues and nephrotoxicity. J. Med. Chem., 2008, 51(19), 5993-6004.
[53]
Bergeron, R.J.; Wiegand, J.; McManis, J.S.; Bharti, N. The design, synthesis, and evaluation of organ-specific iron chelators. J. Med. Chem., 2006, 49(24), 7032-7043.
[54]
Bergeron, R.J.; Wiegand, J.; McManis, J.S.; Bharti, N.; Singh, S. Design, synthesis, and testing of non-nephrotoxic desazades-ferrithiocin polyether analogues. J. Med. Chem., 2008, 51(13), 3913-3923.
[55]
Bergeron, R.J.; Wiegand, J.; McManis, J.S.; Vinson, J.R.; Yao, H.; Bharti, N.; Rocca, J.R. (S)-4, 5-Dihydro-2-(2-hydroxy-4-hydroxyphenyl)-4-methyl-4-thiazolecarboxylic Acid Polyethers: A solution to nephrotoxicity. J. Med. Chem., 2006, 49(9), 2772-2783.
[56]
Bergeron, R.J.; Bharti, N.; Wiegand, J.; McManis, J.S.; Singh, S.; Abboud, K.A. The impact of polyether chain length on the iron clearing efficiency and physiochemical properties of desferrithiocin analogues. J. Med. Chem., 2010, 53(7), 2843-2853.
[57]
Taher, A.T.; Saliba, A.N.; Kuo, K.H.; Giardina, P.J.; Cohen, A.R.; Neufeld, E.J.; Aydinok, Y.; Kwiatkowski, J.L.; Jeglinski, B.I.; Pietropaolo, K. Safety and pharmacokinetics of the oral iron chelator SP‐420 in β‐thalassemia. Am. J. Hematol., 2017, 92(12), 1356-1361.
[58]
Bergeron, R.J.; Wiegand, J.; McManis, J.S.; Weimar, W.R.; Park, J-H.; Eiler-McManis, E.; Bergeron, J.; Brittenham, G.M. Partition-variant desferrithiocin analogues: Organ targeting and increased iron clearance. J. Med. Chem., 2005, 48(3), 821-831.
[59]
Barton, J.C. Drug evaluation: Deferitrin for iron overload disorders. Drugs, 2007, 10(7), 480-490.
[60]
Bergeron, R.J.; Wiegand, J.; Bharti, N.; McManis, J.S.; Singh, S. Desferrithiocin analogue iron chelators: Iron clearing efficiency, tissue distribution, and renal toxicity. Biometals, 2011, 24(2), 239-258.
[61]
Bergeron, R.J.; Wiegand, J.; Weimar, W.R.; McManis, J.S.; Smith, R.E.; Abboud, K.A. Iron chelation promoted by desazadesferrithiocin analogs: An enantioselective barrier. Chirality, 2003, 15(7), 593-599.
[62]
Bergeron, R.J.; Huang, G.; Weimar, W.R.; Smith, R.E.; Wiegand, J.; McManis, J.S. Desferrithiocin analogue based hexacoordinate iron(III) chelators. J. Med. Chem., 2003, 46(1), 16-24.
[63]
Bergeron, R.J.; Wiegand, J.; Bharti, N.; Singh, S.; Rocca, J.R. Impact of the 3, 6, 9-trioxadecyloxy group on desazadesferrithiocin analogue iron clearance and organ distribution. J. Med. Chem., 2007, 50(14), 3302-3313.
[64]
Sheth, S. Iron chelation: An update. Curr. Opin. Hematol., 2014, 21(3), 179-185.
[65]
Rienhoff, H.Y., Jr; Viprakasit, V.; Tay, L.; Harmatz, P.; Vichinsky, E.; Chirnomas, D.; Kwiatkowski, J.; Tapper, A.; Kramer, W.; Porter, J. A phase 1 dose-escalation study: Safety, tolerability, and pharmacokinetics of FBS0701, a novel oral iron chelator for the treatment of transfusional iron overload. Haematologica, 2010, 96(4), 521-525.
[66]
Ma, Y.; Zhou, T.; Kong, X.; Hider, C.R. Chelating agents for the treatment of systemic iron overload. Curr. Med. Chem., 2012, 19(17), 2816-2827.
[67]
Hider, R.C.; Kong, X.; Abbate, V.; Harland, R.; Conlon, K.; Luker, T. Deferitazole, a new orally active iron chelator. Dalton T., 2015, 44(11), 5197-5204.