Generic placeholder image

Current Analytical Chemistry

Editor-in-Chief

ISSN (Print): 1573-4110
ISSN (Online): 1875-6727

Review Article

Innovative Configurations of Sample Preparation Techniques Applied in Bioanalytical Chemistry: A Review

Author(s): Marcello Locatelli*, Angela Tartaglia, Silvia Piccolantonio, Luigi Alessandro Di Iorio, Elena Sperandio, Halil Ibrahim Ulusoy, Kenneth G. Furton and Abuzar Kabir

Volume 15, Issue 7, 2019

Page: [731 - 744] Pages: 14

DOI: 10.2174/1573411015666190301145042

Price: $65

Abstract

Background: Recently, in all fields of analytical chemistry, increased attention has been paid to extraction procedures and instrumental methods, which are easily scalable and are able to automate in order to improve the “high-throughput” capability.

Introduction: The main goal of these applications relates to an improvement of the precision in the quantitative analysis, reduction of different sources of errors, decrease the analysis time and, in general, improve the analytical performances. Often these points can be in contrast to each other, not allowing to achieve the expected result but forcing a compromise between the objectives of the method and the analytical performance.

Methods: In this review, following the evolution of the (micro)extraction procedures and instrument configurations, the recent procedures used in bioanalytical chemistry are critically evaluated. The aim of this paper is providing an overview of the approaches available in order to perform on-line coupling of various extraction techniques with chromatographic methods for the analysis of different compounds in various samples. Furthermore, a comparison between off-line and on-line systems, advantages of on-line systems applied on major extractive techniques and future perspectives are described.

Result: The extraction methods suitable for on-line coupling covered in this review are: liquid-liquid extraction (LLE), solid phase extraction (SPE), solid phase microextraction (SPME), dispersive liquid- liquid microextraction (DLLME), microextraction by packed sorbent (MEPS), supercritical fluid extraction (SFE) and fabric phase sorptive extraction (FPSE).

Conclusion: An overview of the micro-extraction techniques mentioned above was provided, making a comparison between them and focusing attention on future perspectives.

Keywords: (Micro)extraction procedures, dispersive liquid-liquid microextraction (DLLME), fabric phase sorptive extraction (FPSE), microextraction by packed sorbent (MEPS), supercritical fluid extraction (SFE), solid phase extraction (SPE).

Graphical Abstract

[1]
Medvedovici, A.; Bacalum, E.; David, V. Sample preparation for large-scale bioanalytical studies based on liquid chromatographic techniques. Biomed. Chromatogr., 2018, 32(1)e4137
[2]
Kabir, A.; Locatelli, M.; Ulusoy, H.I. Recent trends in microextraction techniques employed in analytical and bioanalytical sample preparation. Separations, 2017, 4, 36.
[3]
Sanchez-Camargo, A.P.; Parada Alfonso, F. Ibanez, E.; Cifuentes, A.; On-line coupling of supercritical fluid extraction and chromatographic techniques. J. Sep. Sci., 2017, 40, 213-227.
[4]
Hyötyläinen, T.; Riekkola, M.L. Approaches for on-line coupling of extraction and chromatography. Anal. Bioanal. Chem., 2004, 378, 1962-1981.
[5]
Rodriguez-Mozaz, S.; Lopez de Alda, M.J.; Barceló, D.S. Advantages and limitations of on-line solid phase extraction coupled to liquid chromatography-mass spectrometry technologies versus biosensors for monitoring of emerging contaminants in water. J. Chromatogr. A, 2007, 1152, 97-115.
[6]
Nováková, L.; Vlcková, H. A review of current trends and advances in modern bio-analytical methods: Chromatography and sample preparation. Anal. Chim. Acta, 2009, 656, 8-35.
[7]
Wells, D.A. Liquid-Liquid extraction automation strategies in high throughput bioanalytical sample preparation: Methods and automation strategies. Elsevier, 2003, 5, 327-360.
[8]
Hussain, S.; Patel, H.; Tan, A. Automated liquid-liquid extraction method for high‐throughput analysis of rosuvastatin in human EDTA K2 plasma by LC‐MS/MS. Bioanalysis, 2009, 1(3), 529-535.
[9]
Moein, M.M.; El Beggali, A.; Abdel-Rehim, M. Bioanalytical method development and validation: Critical concepts and strategies. J. Chromatogr. B ., 2017, 1043, 3-11.
[10]
Baggiani, C.; Anfossi, L.; Giovannoli, C. Solid phase extraction of food contaminants using molecular imprinted polymers. Anal. Chim. Acta, 2007, 591, 29-39.
[11]
Wang, Y.; Gao, S. Li.; Ma, J. Graphene-based solid-phase extraction combined with flame atomic absorption spectrometry for a sensitive determination of trace amounts of lead in environmental water and vegetable samples. Anal. Chim. Acta, 2012, 716, 112-118.
[12]
Wierucka, M.; Biziuk, M. Application of magnetic nanoparticles for magnetic solid-phase extraction in preparing biological, environmental and food samples. Trends Analyt. Chem., 2014, 59, 50-58.
[13]
Syed, M.S.; Xingguang, S.; Faheem, M.; Zoumana, S.; Traore, Y.G. Highly Selective solid-phase extraction of Pb(II) by ion-imprinted superparamagnetic mesoporous silica. Chem. Select, 2019, 4, 259-264.
[14]
Rubirola, A.; Boleda, M.R.; Galceran, M.T. Multiresidue analysis of 24 Water Framework Directive priority substances by on-line solid phase extraction-liquid chromatography tandem mass spectrometry in environmental waters. J. Chromatogr. A, 2017, 1493, 64-75.
[15]
Valsecchi, S.; Polesello, S.; Mazzoni, M.; Rusconi, M. On-line sample extraction and purification for the LC-MS determination of emerging contaminants in environmental samples. TrEAC, 2015, 8, 27-37.
[16]
Lhotská, I.; Gajdošová, B.; Solich, P.; Šatínský, D. Molecularly imprinted vs. reversed-phase extraction for the determination of zearalenone: a method development and critical comparison of sample clean-up efficiency achieved in an on-line coupled SPE chromatography system. Anal. Bioanal. Chem., 2018, 410(14), 3265-3273.
[17]
Wang, X.; Feng, J.; Tian, Y.; Luo, C.; Sun, M. Co-Al bimetallic hydroxide nanocomposites coating for online in-tube solid-phase microextraction. J. Chromatogr. A, 2018, 1550, 1-7.
[18]
Moriyama, E.; Kataoka, H. Automated analysis of oxytocin by on-line in-tube solid-phase microextraction coupled with liquid chromatography-tandem mass spectrometry. Chromatography , 2015, 2, 382-391.
[19]
Zuloaga, O.; Olivares, M.; Navarro, P.; Vallejo, A.; Prieto, A. Dispersive liquid-liquid microextraction: Trends in the analysis of biological samples. Bioanalysis, 2015, 7(17), 2211-2225.
[20]
Shishov, A.B.; Locatelli, M.; Carradori, S.; Andruch, V. Application of deep eutectic solvents in analytical chemistry. A review. Microchem. J., 2017, 135, 33-38.
[21]
Anthemidis, A.N.; Ioannou, K.I.G. On-line sequential injection dispersive liquid-liquid microextraction system for flame atomic absorption spectrometric determination of copper and lead in water samples. Talanta, 2009, 79, 86-91.
[22]
Andruch, V.; Acebal, C.C.; Škrlíková, J.; Sklenářová, H.; Solich, P.; Balogh, I.; Billes, F.; Kocúrová, L.; Főiskola, N.; Műszaki, B.; Egyetem, G. Automated on-line dispersive liquid-liquid microextraction based on a sequential injection system. Microchem. J., 2012, 100, 77-82.
[23]
Diuzheva, A.; Carradori, S.; Andruch, V.; Locatelli, M.; De Luca, E.; Tiecco, M.; Germani, R.; Menghini, L.; Nocentini, A.; Gratteri, P.; Campestre, C. Use of innovative (micro)extraction techniques to characterize Harpagophytum procumbens root and its commercial food supplements. Phytochem. Anal., 2018, 29, 233-241.
[24]
Locatelli, M.; Ferrone, V.; Cifelli, R.; Barbacane, R.C.; Carlucci, G. Micro Extraction by packed sorbent and HPLC determination of seven non-steroidal anti-inflammatory drugs in human plasma and urine. J. Chromatogr. A, 2014, 1367, 1-8.
[25]
Locatelli, M.; Ciavarella, M.T.; Paolino, D.; Celia, C.; Fiscarelli, E.; Ricciotti, G.; Pompilio, A.; Di Bonaventura, G.; Grande, R.; Zengin, G.; Di Marzio, L. Determination of ciprofloxacin and levofloxacin in human sputum collected from cystic fibrosis patients using microextraction by packed sorbent-high performance liquid chromatography photodiode array detector. J. Chromatogr. A, 2015, 1419, 58-66.
[26]
D’Angelo, V.; Tessari, F.; Bellagamba, G.; De Luca, E.; Cifelli, R.; Celia, C.; Primavera, R.; Di Francesco, M.; Paolino, D.; Di Marzio, L.; Locatelli, M. MicroExtraction by packed sorbent and HPLC-PDA quantification of multiple anti-inflammatory drugs and fluoroquinolones in human plasma and urine. J. Enzyme Inhib. Med. Chem., 2016, 31(S3), 110-116.
[27]
Campestre, C.; Locatelli, M.; Guglielmi, P.; De Luca, E.; Bellagamba, G.; Menta, S.; Zengin, G.; Celia, C.; Di Marzio, L.; Carradori, S. Analysis of imidazoles and triazoles in biological samples after MicroExtraction by Packed Sorbent. J. Enzyme Inhib. Med. Chem., 2017, 32(1), 1053-1063.
[28]
Yang, L.; Said, R.; Abdel-Rehim, M. Sorbent, device, matrix and application in microextraction by packed sorbent (MEPS): A review. J. Chromatogr. B , 2017, 1043, 33-43.
[29]
Daryanavard, S.M.; Jeppsson-Dadoun, A.; Andersson, L.I.; Hashemi, M.; Colmsjö, A. Abdel-RehimM. Molecularly imprinted polymer in microextraction by packed sorbent for the simultaneous determination of local anesthetics: lidocaine, ropivacaine, mepivacaine and bupivacaine in plasma and urine samples. Biomed. Chromatogr., 2013, 27, 1481-1488.
[30]
Sánchez-Camargo, A.D.P.; Parada-Alonso, F.; Ibáñez, E.; Cifuentes, A. Recent applications of on-line supercritical fluid extraction coupled to advanced analytical techniques for compounds extraction and identification. J. Sep. Sci., 2018, 1, 1-15.
[31]
Wicker, A.P.; Carlton, D.D. Jr.; Tanaka, K.; Nishimura, M.; Chen, V.; Ogura, T.; Hedgepeth, W.; Schug, K.A. On-line supercritical fluid extraction-supercritical fluid chromatography mass spectrometry of polycyclic aromatic hydrocarbons in soil. J. Chromatogr. B , 2018, 1086, 82-88.
[32]
Kabir, A.; Kenneth, G.F. Fabric Phase Sorptive Extractors. US Brevetto 20140274660A1 2014.
[33]
Kabir, A.; Mesa, R.; Jurmain, J.; Furton, K.G. Fabric phase sorbtive extraction explained. Separations, 2017, 4(2), 1-21.
[34]
Lakade, S.S.; Borrull, F.; Furton, K.G.; Kabir, A.; Marcé, R.M.; Fontanals, N. Dynamic fabric phase sorptive extraction for a group of pharmaceuticals and personal care products from environmental waters. J. Chromatogr. A, 2016, 1456, 19-26.
[35]
Aznar, M.; Alfaro, P.; Nerin, C.; Kabir, A.; Furton, K.G. Fabric phase sorptive extraction: An innovative sample preparation approach applied to the analysis of specific migration from food packaging. Anal. Chim. Acta, 2016, 936, 97-107.
[36]
Locatelli, M.; Kabir, A.; Innosa, D.; Lopatriello, T.; Furton, K.G. A fabric phase sorptive extraction-High performance liquid chromatography-Photo diode array detection method for the determination of twelve azole antimicrobial drug residues in human plasma and urine. J. Chromatogr. B , 2017, 1040, 192-198.
[37]
Kabir, A.; Furton, K.G.; Tinari, N.; Grossi, L.; Innosa, D.; Macerola, D.; Tartaglia, A.; Di Donato, V.; D’Ovidio, C.; Locatelli, M. Fabric phase sorptive extraction-high performance liquid chromatography photo diode array detection method for simultaneous monitoring of three inflammatory bowel disease treatment drugs in whole blood, plasma and urine. J. Chromatogr. B , 2018, 1084, 53-63.
[38]
Locatelli, M.; Tinari, N.; Grassadonia, A.; Tartaglia, A.; Macerola, D.; Piccolantonio, S.; Sperandio, E.; D’Ovidio, C.; Carradori, S.; Ulusoy, H.I.; Furton, K.G.; Kabir, A. FPSE-HPLC DAD method for the quantification of anticancer drugs in human whole blood, plasma, and urine. J. Chromatogr. , 2018, 1095, 204-213.
[39]
Anthemidis, A.; Kazantzi, V.; Samanidou, V.; Kabir, A.; Furton, K.G. An automated flow injection system for metal determination by flame atomic absorption spectrometry involving on-line fabric disk sorptive extraction technique. Talanta, 2016, 156, 64-70.
[40]
Kazantzi, V.; Samanidou, V.; Kabir, A.; Kenneth, G.F.; Anthemidis, A. On-Line fabric disk sorptive extraction via a flow preconcentration platform coupled with atomic absorption spectrometry for the determination of essential and toxic elements in biological samples. Separations, 2018, 5, 1-13.
[41]
Kazantzi, V.; Kabir, A.; Kenneth, G.F.; Anthemidis, A. Fabric fiber sorbent extraction for on-line toxic metal determination by atomic absorption spectrometry: Determination of lead and cadmium in energy and soft drinks. Microchem. J., 2018, 137, 285-291.
[42]
Hossein, N.; Nasim, M.; Morteza, R.N.; Hossein, V. Removal of aliphatic hydrocarbons from gas oil contaminated clay soil via soil vapor extraction. Civil Eng. J., 2018, 4, 1858-1868.
[43]
Razavi, A.S.A.; Nemati, L.E.; Alizadeh, M.Z.S. A CFD study of industrial double-cyclone in HDPE drying process. Emerg. Sci. J., 2018, 2, 31-38.
[44]
Sherine, M.W.; Basil, A.K.; Khaled, M.N.; Ahmed, S.A. Effectiveness of green roofs and green walls on energy consumption and indoor comfort in arid climates. Civil Eng. J., 2018, 4, 2284-2295.
[45]
Wang, P.G.; Wei, J.S.; Kim, G.; Chang, M.; El-Shourbagy, T. Validation and application of a high‐performance liquid chromatography tandem mass spectrometric method for simultaneous quantification of lopinavir and ritonavir in human plasma using semi‐automated 96‐well liquid-liquid extraction. J. Chromatogr. A, 2006, 1130, 302-307.
[46]
Farré, M.J.; Insa, S.; Mamo, J.; Barceló, D. Determination of 15 N-nitrosodimethylamine precursors in different water matrices by automated on-line solid-phase extraction ultra-high-performance-liquid chromatography tandem mass ultra-high-performance-liquid chromatography tandem mass spectrometry. J. Chromatogr. A, 2016, 1458, 99-111.
[47]
Bones, J.; Thomas, K.; Nesterenko, P.N.; Paull, B. On-line preconcentration of pharmaceutical residues from large volume water samples using short reversed-phase monolithic cartridges coupled to LC-UV-ESI-MS. Talanta, 2006, 70, 1117-1128.
[48]
Lu, X.F.; Zhou, Y.; Zhang, J.; Ren, Y. Determination of fluoroquinolones in cattle manure-based biogas residue by ultrasonic-enhanced microwave-assisted extraction followed by online solid phase extraction-ultra-high-performance liquid chromatography-tandem mass spectrometry. J. Chromatogr. B ., 2018, 1086, 166-175.
[49]
Wang, X.; Feng, J.; Bu, Y.; Tian, Y.; Luo, C.; Sun, M. Mesoporous titanium oxide with high-specific surface area as a coating for in-tube solid-phase microextraction combined with high-performance liquid chromatography for the analysis of polycyclic aromatic hydrocarbons. J. Sep. Sci., 2017, 40, 2474-2481.
[50]
Šrámková, I.; Chocholouš, P.; Sklenářová, H.; Šatínský, D. On-line coupling of micro-extraction by packed sorbent with sequential injection chromatography system for direct extraction and determination of betaxolol in human urine. Talanta, 2015, 143, 132-137.
[51]
Yang, T.J.; Tsai, F.J.; Chen, C.Y.; Yang, T.C.; Lee, M.R. Determination of additives in cosmetics by supercritical fluid extraction on-line headspace solid-phase microextraction combined with gas chromatography-mass spectrometry. Anal. Chim. Acta, 2010, 668, 188-194.

Rights & Permissions Print Cite
© 2024 Bentham Science Publishers | Privacy Policy