[1]
Bachmair, A.; Finley, D.; Varshavsky, A. In vivo half-life of a protein is a function of its amino-terminal residue. Science, 1986, 234, 179-186.
[2]
Bennet, A.J.; Wang, Q.P.; Slebocka-Tilk, H.; Somayaji, V.; Brown, R.S.; Santarsiero, B.D. Concurrent oxygen-18 exchange accompanying the acid-catalyzed hydrolysis of anilides. Implications for the lifetimes of reversibly formed intermediates. J. Am. Chem. Soc., 1990, 112, 6383-6385.
[3]
Brannigan, J.A.; Dodson, G.; Duggleby, H.J.; Moody, P.C.; Smith, J.L.; Tomchick, D.R.; Murzin, A.G. A protein catalytic framework with an N-terminal nucleophile is capable of self-activation. Nature, 1995, 378, 416-419.
[4]
Perler, F.B.; Xu, M.Q.; Paulus, H. Protein splicing and autoproteolysis mechanisms. Curr. Opin. Chem. Biol., 1997, 1, 292-299.
[5]
Xu, Q.; Buckley, D.; Guan, C.; Guo, H.C. Structural insights into the mechanism of intramolecular proteolysis. Cell, 1999, 98, 651-661.
[6]
Rechsteiner, M.; Rogers, S.W. PEST sequences and regulation by proteolysis. Trends Biochem. Sci., 1996, 21, 267-271.
[7]
Tobias, J.; Shrader, T.; Rocap, G.; Varshavsky, A. The N-end rule in bacteria. Science, 1991, 254, 1374-1377.
[8]
Guruprasad, K.; Reddy, B.V.; Pandit, M.W. Correlation between stability of a protein and its dipeptide composition: A novel approach for predicting in vivo stability of a protein from its primary sequence. Protein Eng., 1990, 4, 155-161.
[9]
Li, F.; Nie, L.; Wu, G.; Qiao, J.; Zhang, W. Prediction and characterization of missing proteomic data in Desulfovibrio vulgaris. Comp. Funct. Genomics, 2011, 2011, 780973.
[10]
Rechsteiner, M. PEST sequences are signals for rapid intracellular proteolysis. Semin. Cell Biol., 1990, 1, 433-440.
[11]
Rogers, S.; Wells, R.; Rechsteiner, M. Amino acid sequences common to rapidly degraded proteins: The PEST hypothesis. Science, 1986, 234, 364-368.
[12]
Sambrook, J.; Fritsh, E.F.; Maniatis, T. Molecular Cloning: A Laboratoty Manual, 2nd ed; Cold Spring Harbor Laboratory Press: New York, 1989.
[13]
Crowder, M.W.; Walsh, T.R.; Banovic, L.; Pettit, M.; Spencer, J. Overexpression, purification, and characterization of the cloned metallo-beta-lactamase L1 from Stenotrophomonas maltophilia. Antimicrob. Agents Chemother., 1998, 42, 921-926.
[14]
Hu, Z.; Periyannan, G.; Bennett, B.; Crowder, M.W. Role of the Zn1 and Zn2 sites in metallo-beta-lactamase L1. J. Am. Chem. Soc., 2008, 130, 14207-14216.
[15]
Bradford, M.M. A rapid and sensitive method for the quantitation of microgram quantities of protein utilizing the principle of protein-dye binding. Anal. Biochem., 1976, 72, 248-254.
[16]
Greenfield, N.J. Applications of circular dichroism in protein and peptide analysis. Trends Analyt. Chem., 1999, 18, 236-244.
[17]
Greenfield, N.J. Using circular dichroism spectra to estimate protein secondary structure. Nat. Protoc., 2006, 1(6), 2876-2890.
[18]
Periyannan, G.; Shaw, P.J.; Sigdel, T.; Crowder, M.W. In vivo folding of recombinant metallo-β-lactamase L1 requires the presence of Zn(II). Protein Sci., 2004, 13, 2236-2243.
[19]
Lakowicz, J.R. Principles of fluorescence spectroscopy, 3rd ed; Springer: New York, 2006.
[20]
Eftink, M.R. The use of fluorescence methods to monitor unfolding transitions in proteins. Biophys. J., 1994, 66, 482-501.
[21]
Kronman, M.J.; Holmes, L.G. The fluorescence of native, denatured and reduced-denaturedproteins. Photochem. Photobiol., 1971, 14, 113-134.
[22]
Fang, Q.; Kani, K.; Faca, V.M.; Zhang, W.; Zhang, Q.; Jain, A.; Hanash, S.; Agus, D.B.; McIntosh, M.W.; Mallick, P. Impact of protein stability, cellular localization, and abundance on proteomic detection of tumor-derived proteins in plasma. PLoS One, 2011, 6, e23090.
[23]
Unverdorben, F.; Färber-Schwarz, A.; Richter, F.; Hutt, M.; Kontermann, R.E. Half-life extension of a single-chain diabody by fusion to domain B of staphylococcal protein A. Protein Eng. Des. Sel., 2012, 25, 81-88.
[24]
Reddy, B.V. Structural distribution of dipeptides that are identified to be determinants of intracellular protein stability. J. Biomol. Struct. Dyn., 1996, 14, 201-210.
[25]
Kumar, A.; Periyannan, G.R.; Narayanan, B.; Kittell, A.W.; Kim, J.J.; Bennett, B. Experimental evidence for a metallohydrolase mechanism in which the nucleophile is not delivered by a metal ion: EPR spectrokinetic and structural studies of aminopeptidase from Vibrio proteolyticus. Biochem. J., 2007, 403(3), 527-536.
[26]
Butler, S.L.; Falke, J.J. Effects of protein stabilizing agents on thermal backbone motions: A disulfide trapping study. Biochemistry, 1996, 35(33), 10595-10600.
[27]
Blair, W.S.; Semler, B.L. Self-cleaving proteases. Curr. Opin. Cell Biol., 1991, 3, 1039-1045.
[28]
Paulus, H. Protein splicing and related forms of protein autoprocessing. Annu. Rev. Biochem., 2000, 69, 447-496.
[29]
Perler, F.B. Breaking up is easy with esters. Nat. Struct. Biol., 1998, 5, 249-252.
[30]
Holley, R.W. Steric inhibition of amide resonance and its possible significance in enzyme action. Science, 1953, 117, 23-25.