Research Article

胎儿免疫胎儿DNA和胎儿宫颈癌非侵袭性产前筛查β-地中海贫血的诊断价值

卷 19, 期 2, 2019

页: [105 - 111] 页: 7

弟呕挨: 10.2174/1566524019666190226124135

价格: $65

摘要

背景:β地中海贫血是常染色体隐性遗传的常见疾病。最产前的诊断方法是具有流产风险的侵入性技术。现在,非侵入性方法将逐渐成为这些侵入性技术的替代方法。 目的:本研究的目的是评估和比较两种非侵入性胎儿地中海贫血诊断方法在一个采样社区中使用无细胞胎儿DNA(cff-DNA)和有核红细胞(NRBC)的诊断价值。 方法:从32名孕妇(平均胎龄= 11周)的两只k3EDTA管中取10ml血液,其本人及其丈夫患有轻度地中海贫血。一根管用于富集NRBC,另一根用于cff-DNA提取。通过MACS方法和免疫组织化学分离NRBCs;通过多重置换扩增(MDA)程序扩增染色细胞的基因组。这些产物用作b-珠蛋白区段PCR中的模板。通过THP方法提取cff-DNA,从琼脂糖凝胶中回收300bp区域作为胎儿DNA。这些DNA在触底PCR中用作模板以扩增b-珠蛋白基因。对扩增的b-珠蛋白区段进行测序,并将结果与CVS结果进行比较。 结果:数据显示,NRBC诊断地中海贫血的敏感性和特异性分别为100%和92%,cff-DNA诊断地中海贫血的敏感性和特异性分别为100%和84%。 结论:这些灵敏度高的方法可作为筛选试验,但由于其特异性低于CVS,因此不能作为诊断试验。

关键词: 产前诊断,β-地中海贫血,筛查,NRBC,Cff-DNA,非侵入性。

Next »
[1]
Fucharoen S, Winichagoon P. Hemoglobinopathies in southeast Asia. Hemoglobin 1987; 11(1): 65-88.
[2]
Smith CH. Smith’s blood diseases of infancy and childhood. Saint Louis: Mosby 1978.
[3]
Giardina P, Forget B. Thalassemia syndromes. Hematol Basic Principl Pract 2008; 5: 535-63.
[4]
Rachmilewitz EA, Giardina PJ. How I treat thalassemia. Blood 2011; 118(13): 3479-88.
[5]
Ghotbi N, Tsukatani T. Evaluation of the national health policy of thalassaemia screening in the Islamic Republic of Iran. East Mediterr Health J 2005; 11(3): 308-18.
[6]
Akolekar R, Beta J, Picciarelli G, Ogilvie C, d’Antonio F. Procedure‐related risk of miscarriage following amniocentesis and chorionic villus sampling: a systematic review and meta‐analysis. Ultrasound Obstet Gynecol 2015; 45(1): 16-26.
[7]
Berry SM, Stone J, Norton ME, Johnson D, Berghella V. Medicine SfM-F. Fetal blood sampling. AJOG 2013; 209(3): 170-80.
[8]
Benn P, Cuckle H, Pergament E. Non‐invasive prenatal testing for aneuploidy: current status and future prospects. Ultrasound Obstet Gynecol 2013; 42(1): 15-33.
[9]
Bianchi DW, Flint AF, Pizzimenti MF, Knoll J, Latt SA. Isolation of fetal DNA from nucleated erythrocytes in maternal blood. Proc Natl Acad Sci USA 1990; 87(9): 3279-83.
[10]
Lo YD, Corbetta N, Chamberlain PF, et al. Presence of fetal DNA in maternal plasma and serum. The Lancet 1997; 350(9076): 485-7.
[11]
Wright CF, Burton H. The use of cell-free fetal nucleic acids in maternal blood for non-invasive prenatal diagnosis. Hum Reprod Update 2009; 15(1): 139-51.
[12]
Xue X, Teare MD, Holen I, Zhu YM, Woll PJ. Optimizing the yield and utility of circulating cell-free DNA from plasma and serum. Clin Chim Acta 2009; 404(2): 100-4.
[13]
Jorgez CJ, Bischoff FZ. Improving enrichment of circulating fetal DNA for genetic testing: size fractionation followed by whole gene amplification. Fetal Diagn Ther 2009; 25(3): 314-9.
[14]
Finning K, Martin P, Summers J, Massey E, Poole G, Daniels G. Effect of high throughput RHD typing of fetal DNA in maternal plasma on use of anti-RhD immunoglobulin in RhD negative pregnant women: prospective feasibility study. BMJ 2008; 36(7648): 816-8.
[15]
Legler TJ, Liu Z, Mavrou A, et al. Workshop report on the extraction of foetal DNA from maternal plasma. Prenat Diagn 2007; 27(9): 824-9.
[16]
Dhallan R, Au W-C, Mattagajasingh S, et al. Methods to increase the percentage of free fetal DNA recovered from the maternal circulation. JAMA 2004; 291(9): 1114-9.
[17]
Xu X-P, Gan H-Y, Li F-X, et al. A method to quantify cell-free fetal DNA fraction in maternal plasma using next generation sequencing: its application in non-invasive prenatal chromosomal aneuploidy detection. PLoS One 2016; 11(1): e0146997.
[18]
Kitagawa Y, Sugihara R. Genetic chromosome test management system, test management server, client terminal, genetic chromosome test management method, and program. Google Patents 2016.
[19]
Hudecova I, Chiu RW. Non-invasive prenatal diagnosis of thalassemias using maternal plasma cell free DNA. Best Pract Res Clin Obstet Gynaecol 2017; 39: 63-73.
[20]
Hahn S, Zhong XY, Holzgreve W. Recent progress in non-invasive prenatal diagnosis. Paper presented at. Semin Fetal Neonatal Med 2008; 13(2): 57-62.
[21]
Keshavarz Z, Moezzi L, Ranjbaran R, et al. Evaluation of a modified DNA extraction method for isolation of cell-free fetal DNA from maternal serum. AJMB 2015; 7(2): 85.
[22]
Douglas GW, Thomas L, Carr M, Cullen NM, Morris R. Trophoblast in the circulating blood during pregnancy. AJOG 1959; 78: 960-73.
[23]
Hahn S, Sant R, Holzgreve W. Fetal cells in maternal blood: current and future perspectives. Mol Hum Reprod 1998; 4(6): 515-21.
[24]
Beaudet AL. Using fetal cells for prenatal diagnosis: history and recent progress. Paper presented at: American Journal of Medical Genetics Part C: Seminars in Medical Genetics. 2016.
[25]
Cheng W-L, Hsiao C-H, Tseng H-W, Lee T-P. Noninvasive prenatal diagnosis. Taiwan J Obstet Gynecol 2015; 54(4): 343-9.
[26]
Hatt L, Brinch M, Singh R, et al. Characterization of fetal cells from the maternal circulation by microarray gene expression analysis-Could the extravillous trophoblasts be a target for future cell-based non-invasive prenatal diagnosis? Fetal Diagn Ther 2013; 35(3): 218-27.
[27]
D'Souza E, Ghosh K, Colah R. A comparison of the choice of monoclonal antibodies for recovery of fetal cells from maternal blood using FACS for noninvasive prenatal diagnosis of hemoglobinopathies . Cytometry Part B: Clinical Cytometry. 2009; 76(3): 175-80.
[28]
Samura O, Sekizawa A, Zhen DK, Falco VM, Bianchi DW. Comparison of fetal cell recovery from maternal blood using a high density gradient for the initial separation step: 1.090 versus 1.119 g/ml. Prenat Diagn 2000; 20(4): 281-6.
[29]
Prieto B, Alonso R, Paz A, et al. Optimization of nucleated red blood cell (NRBC) recovery from maternal blood collected using both layers of a double density gradient. Prenat Diagn 2001; 21(3): 187-93.
[30]
avanagh D, Kersaudy-Kerhoas M, Dhariwal R, Desmulliez M. Current and emerging techniques of fetal cell separation from maternal blood. Chromatogr B 2010; 878(22): 1905-11.
[31]
Ponnusamy S, Mohammed N, Ho S, et al. In vivo model to determine fetal-cell enrichment efficiency of novel noninvasive prenatal diagnosis methods. Prenat Diagn 2008; 28(6): 494-502.
[32]
Di Naro E, Ghezzi F, Vitucci A, et al. Prenatal diagnosis of β-thalassaemia using fetal erythroblasts enriched from maternal blood by a novel gradient. Mol Hum Reprod 2000; 6(6): 571-4.
[33]
Brittain T. Molecular aspects of embryonic hemoglobin function. Mol Aspects Med 2002; 23(4): 293-42.
[34]
Han JY, Kim KH, Park JI, Kim IH, Je GH. Detection of fetal erythroid cells from maternal blood using fluorescence in situ hybridization and liquid culture. J Korean Med Sci 2001; 16(2): 145-9.
[35]
Peng W, Takabayashi H, Ikawa K. Whole genome amplification from single cells in preimplantation genetic diagnosis and prenatal diagnosis. Eur J Obstet Gynecol Reprod Biol 2007; 131(1): 13-20.
[36]
Normand E, Qdaisat S, Bi W, et al. Comparison of three whole genome amplification methods for detection of genomic aberrations in single cells. Prenat Diagn 2016; 36(9): 823-30.
[37]
Chiu RW, Lau TK, Leung TN, Chow KC, Chui DH, Lo YD. Prenatal exclusion of β thalassaemia major by examination of maternal plasma. Lancet 2002; 360(9338): 998-1000.
[38]
Li Y, Di Naro E, Vitucci A, Zimmermann B, Holzgreve W, Hahn S. Detection of paternally inherited fetal point mutations for β-thalassemia using size-fractionated cell-free DNA in maternal plasma. JAMA 2005; 293(7): 843-9.

Rights & Permissions Print Cite
© 2024 Bentham Science Publishers | Privacy Policy