Review Article

纳米钙基生物材料及其在药物传递中的应用

卷 27, 期 31, 2020

页: [5189 - 5212] 页: 24

弟呕挨: 10.2174/0929867326666190222193357

价格: $65

摘要

在过去的几十年里,各种类型的纳米结构生物材料得到了发展。这些纳米结构的生物材料在骨修复、组织工程、药物传递、基因传递、抗菌药物和生物成像等生物医学领域有着广阔的应用前景。具有高生物相容性的纳米结构生物材料,包括磷酸钙、羟基磷灰石和硅酸钙,是理想的药物传递材料。本文不打算对纳米结构生物材料及其在药物传递中的应用作一综述,而是对该领域的最新进展作一简要综述。总结了近年来我们在纳米生物材料给药方面的研究进展。本文特别关注纳米结构生物材料的合成、性质及其在给药方面的应用,并结合典型例子进行介绍。最后,我们讨论了纳米结构生物材料在药物传递领域的问题和未来展望。

关键词: 生物材料,纳米结构,药物传递,合成,性能,应用

[1]
Frost, S.J.; Mawad, D.; Hook, J.; Lauto, A. Micro and nanostructured biomaterials for sutureless tissue repair. Adv. Healthc. Mater., 2016, 5(4), 401-414.
[http://dx.doi.org/10.1002/adhm.201500589] [PMID: 26725593]
[2]
Cai, Y.R.; Tang, R.K. Calcium phosphate nanoparticles in biomineralization and biomaterials. J. Mater. Chem., 2008, 18, 3775-3787.
[http://dx.doi.org/10.1039/b805407j]
[3]
Doshi, N.; Mitragotri, S. Designer biomaterials for nanomedicine. Adv. Funct. Mater., 2009, 19, 3843-3854.
[http://dx.doi.org/10.1002/adfm.200901538]
[4]
Wei, G.; Ma, P.X. Nanostructured biomaterials for regeneration. Adv. Funct. Mater., 2008, 18(22), 3566-3582.
[http://dx.doi.org/10.1002/adfm.200800662] [PMID: 19946357]
[5]
Satarkar, N.S.; Biswal, D.; Hilt, J.Z. Hydrogel nanocomposites: a review of applications as remote controlled biomaterials. Soft Matter, 2010, 6, 2364-2371.
[http://dx.doi.org/10.1039/b925218p]
[6]
Soppimath, K.S.; Aminabhavi, T.M.; Kulkarni, A.R.; Rudzinski, W.E. Biodegradable polymeric nanoparticles as drug delivery devices. J. Control. Release, 2001, 70(1-2), 1-20.
[http://dx.doi.org/10.1016/S0168-3659(00)00339-4] [PMID: 11166403]
[7]
Johnstone, T.C.; Suntharalingam, K.; Lippard, S.J. The next generation of platinum drugs: targeted Pt(II) agents, nanoparticle delivery, and Pt (IV) prodrugs. Chem. Rev., 2016, 116(5), 3436-3486.
[http://dx.doi.org/10.1021/acs.chemrev.5b00597] [PMID: 26865551]
[8]
Zhu, Y.J.; Chen, F. pH-responsive drug-delivery systems. Chem. Asian J., 2015, 10(2), 284-305.
[http://dx.doi.org/10.1002/asia.201402715] [PMID: 25303435]
[9]
Sahdev, P.; Ochyl, L.J.; Moon, J.J. Biomaterials for nanoparticle vaccine delivery systems. Pharm. Res., 2014, 31(10), 2563-2582.
[http://dx.doi.org/10.1007/s11095-014-1419-y] [PMID: 24848341]
[10]
Balasundaram, G.; Webster, T.J. Nanotechnology and biomaterials for orthopedic medical applications. Nanomedicine (Lond.), 2006, 1(2), 169-176.
[http://dx.doi.org/10.2217/17435889.1.2.169] [PMID: 17716106]
[11]
Garg, T.; Rath, G.; Goyal, A.K. Biomaterials-based nanofiber scaffold: targeted and controlled carrier for cell and drug delivery. J. Drug Target., 2015, 23(3), 202-221.
[http://dx.doi.org/10.3109/1061186X.2014.992899] [PMID: 25539071]
[12]
LeGeros, R.Z. Properties of osteoconductive biomaterials: calcium phosphates. Clin. Orthop. Relat. Res., 2002, (395), 81-98.
[http://dx.doi.org/10.1097/00003086-200202000-00009] [PMID: 11937868]
[13]
Luo, Y.; Kirker, K.R.; Prestwich, G.D. Cross-linked hyaluronic acid hydrogel films: new biomaterials for drug delivery. J. Control. Release, 2000, 69(1), 169-184.
[http://dx.doi.org/10.1016/S0168-3659(00)00300-X] [PMID: 11018555]
[14]
Nair, L.S.; Laurencin, C.T. Polymers as biomaterials for tissue engineering and controlled drug delivery. Adv. Biochem. Eng. Biotechnol., 2006, 102, 47-90.
[http://dx.doi.org/10.1007/b137240] [PMID: 17089786]
[15]
Pritchard, E.M.; Kaplan, D.L. Silk fibroin biomaterials for controlled release drug delivery. Expert Opin. Drug Deliv., 2011, 8(6), 797-811.
[http://dx.doi.org/10.1517/17425247.2011.568936] [PMID: 21453189]
[16]
Peng, Z.; Miyanji, E.H.; Zhou, Y.; Pardo, J.; Hettiarachchi, S.D.; Li, S.; Blackwelder, P.L.; Skromne, I.; Leblanc, R.M. Carbon dots: promising biomaterials for bone-specific imaging and drug delivery. Nanoscale, 2017, 9(44), 17533-17543.
[http://dx.doi.org/10.1039/C7NR05731H] [PMID: 29110000]
[17]
Uskoković, V.; Uskoković, D.P. Nanosized hydroxyapatite and other calcium phosphates: chemistry of formation and application as drug and gene delivery agents. J. Biomed. Mater. Res. B Appl. Biomater., 2011, 96(1), 152-191.
[http://dx.doi.org/10.1002/jbm.b.31746] [PMID: 21061364]
[18]
Ginebra, M.P.; Canal, C.; Espanol, M.; Pastorino, D.; Montufar, E.B. Calcium phosphate cements as drug delivery materials. Adv. Drug Deliv. Rev., 2012, 64(12), 1090-1110.
[http://dx.doi.org/10.1016/j.addr.2012.01.008] [PMID: 22310160]
[19]
Bose, S.; Tarafder, S. Calcium phosphate ceramic systems in growth factor and drug delivery for bone tissue engineering: a review. Acta Biomater., 2012, 8(4), 1401-1421.
[http://dx.doi.org/10.1016/j.actbio.2011.11.017] [PMID: 22127225]
[20]
Ginebra, M.P.; Traykova, T.; Planell, J.A. Calcium phosphate cements as bone drug delivery systems: a review. J. Control. Release, 2006, 113(2), 102-110.
[http://dx.doi.org/10.1016/j.jconrel.2006.04.007] [PMID: 16740332]
[21]
Trombetta, R.; Inzana, J.A.; Schwarz, E.M.; Kates, S.L.; Awad, H.A. 3D printing of calcium phosphate ceramics for bone tissue engineering and drug delivery. Ann. Biomed. Eng., 2017, 45(1), 23-44.
[http://dx.doi.org/10.1007/s10439-016-1678-3] [PMID: 27324800]
[22]
Dorozhkin, S.V.; Epple, M. Biological and medical significance of calcium phosphates. Angew. Chem. Int. Ed. Engl., 2002, 41(17), 3130-3146.
[http://dx.doi.org/10.1002/1521-3773(20020902)41:17< 3130:AID-ANIE3130>3.0.CO;2-1] [PMID: 12207375]
[23]
Vallet-Regi, M.; Gonzalez-Calbet, J.M. Calcium phosphates as substitution of bone tissues. Prog. Solid State Chem., 2004, 32, 1-31.
[http://dx.doi.org/10.1016/j.progsolidstchem.2004.07.001]
[24]
Ouyang, J.M.; Zheng, H. Progress of biomineralization process of calcium phosphate in bone and teeth. J. Inorg. Mater., 2005, 20, 769-778.
[25]
Paital, S.R.; Dahotre, N.B. Calcium phosphate coatings for bio-implant applications: materials, performance factors, and methodologies. Mater. Sci. Engineer. R-Reports, 2009, 66(1-3), 1-70.
[http://dx.doi.org/10.1016/j.mser.2009.05.001]]
[26]
Chou, J.; Hao, J.; Ben-Nissan, B.; Milthorpe, B.; Otsuka, M. Coral exoskeletons as a precursor material for the development of a calcium phosphate drug delivery system for bone tissue engineering. Biol. Pharm. Bull., 2013, 36(11), 1662-1665.
[http://dx.doi.org/10.1248/bpb.b13-00425] [PMID: 24189408]
[27]
Tang, Q.L.; Zhu, Y.J.; Wu, J.; Chen, F.; Cao, S.W. Calcium phosphate drug nanocarriers with ultrahigh and adjustable drug-loading capacity: one-step synthesis, in situ drug loading and prolonged drug release. Nanomedicine (Lond.), 2011, 7(4), 428-434.
[http://dx.doi.org/10.1016/j.nano.2010.12.005] [PMID: 21215328]
[28]
Zhao, X.Y.; Zhu, Y.J.; Chen, F.; Wu, J. Calcium phosphate nanocarriers dual-loaded with bovine serum albumin and ibuprofen: facile synthesis, sequential drug loading and sustained drug release. Chem. Asian J., 2012, 7(7), 1610-1615.
[http://dx.doi.org/10.1002/asia.201100954] [PMID: 22504936]
[29]
Qi, C.; Zhu, Y.J.; Zhao, X.Y.; Zhao, J.; Chen, F.; Cheng, G.F.; Ruan, Y.J. High surface area carbonate apatite nanorod bundles: surfactant-free sonochemical synthesis and drug loading and release properties. Mater. Res. Bull., 2013, 48, 1536-1540.
[http://dx.doi.org/10.1016/j.materresbull.2012.12.052]
[30]
Zhu, Y.J.; Chen, F. Microwave-assisted preparation of inorganic nanostructures in liquid phase. Chem. Rev., 2014, 114(12), 6462-6555.
[http://dx.doi.org/10.1021/cr400366s] [PMID: 24897552]
[31]
Ma, M.G.; Zhu, J.F.; Zhu, Y.J.; Sun, R.C. The microwave-assisted ionic-liquid method: a promising methodology in nanomaterials. Chem. Asian J., 2014, 9(9), 2378-2391.
[http://dx.doi.org/10.1002/asia.201402288] [PMID: 24895207]
[32]
Meng, L.Y.; Wang, B.; Ma, M.G.; Lin, K.L. The progress of microwave-assisted hydrothermal method in the synthesis of functional nanomaterials. Mater. Today Chem., 2016, 1-2, 63-68.
[http://dx.doi.org/10.1016/j.mtchem.2016.11.003]
[33]
Ding, G.J.; Zhu, Y.J.; Qi, C.; Sun, T.W.; Wu, J.; Chen, F. Yolk-shell porous microspheres of calcium phosphate prepared using calcium (L)-lactate and adenosine 5′-triphosphate disodium salt and application in protein/drug delivery. Chemistry, 2015, 21(27), 9868-9876.
[http://dx.doi.org/10.1002/chem.201406547] [PMID: 25982303]
[34]
Zhou, Z.F.; Sun, T.W.; Chen, F.; Zuo, D.Q.; Wang, H.S.; Hua, Y.Q.; Cai, Z.D.; Tan, J. Calcium phosphate-phosphorylated adenosine hybrid microspheres for anti-osteosarcoma drug delivery and osteogenic differentiation. Biomaterials, 2017, 121, 1-14.
[http://dx.doi.org/10.1016/j.biomaterials.2016.12.031] [PMID: 28063979]
[35]
Shyong, Y.J.; Chang, K.C.; Lin, F.H. Calcium phosphate particles stimulate exosome secretion from phagocytes for the enhancement of drug delivery. Colloids Surf. B Biointerfaces, 2018, 171, 391-397.
[http://dx.doi.org/10.1016/j.colsurfb.2018.07.037] [PMID: 30064087]
[36]
Liu, J.F.; Wei, L.; Duolikun, D.; Hou, X.D.; Chen, F.; Liu, J.J.; Zheng, L.P. Preparation of porous calcium phosphate microspheres with phosphate-containing molecules at room temperature for drug delivery and osteogenic differentiation. RSC Advances, 2018, 8, 25480-25488.
[http://dx.doi.org/10.1039/C8RA03943G]
[37]
Combes, C.; Rey, C. Amorphous calcium phosphates: synthesis, properties and uses in biomaterials. Acta Biomater., 2010, 6(9), 3362-3378.
[http://dx.doi.org/10.1016/j.actbio.2010.02.017] [PMID: 20167295]
[38]
Zhao, J.; Liu, Y.; Sun, W.B.; Zhang, H. Amorphous calcium phosphate and its application in dentistry. Chem. Cent. J., 2011, 5, 40.
[http://dx.doi.org/10.1186/1752-153X-5-40] [PMID: 21740535]
[39]
Xu, H.H.K.; Moreau, J.L.; Sun, L.; Chow, L.C. Nanocomposite containing amorphous calcium phosphate nanoparticles for caries inhibition. Dent. Mater., 2011, 27(8), 762-769.
[http://dx.doi.org/10.1016/j.dental.2011.03.016] [PMID: 21514655]
[40]
Qi, C.; Zhu, Y.J.; Zhao, X.Y.; Lu, B.Q.; Tang, Q.L.; Zhao, J.; Chen, F. Highly stable amorphous calcium phosphate porous nanospheres: microwave-assisted rapid synthesis using ATP as phosphorus source and stabilizer, and their application in anticancer drug delivery. Chemistry, 2013, 19(3), 981-987.
[http://dx.doi.org/10.1002/chem.201202829] [PMID: 23180605]
[41]
Nardecchia, S.; Gutiérrez, M.C.; Serrano, M.C.; Dentini, M.; Barbetta, A.; Ferrer, M.L.; del Monte, F. In situ precipitation of amorphous calcium phosphate and ciprofloxacin crystals during the formation of chitosan hydrogels and its application for drug delivery purposes. Langmuir, 2012, 28(45), 15937-15946.
[http://dx.doi.org/10.1021/la3033435] [PMID: 23088184]
[42]
Pourbaghi-Masouleh, M.; Hosseini, V. Amorphous calcium phosphate nanoparticles could function as a novel cancer therapeutic agent by employing a suitable targeted drug delivery platform. Nanoscale Res. Lett., 2013, 8(1), 449.
[http://dx.doi.org/10.1186/1556-276X-8-449] [PMID: 24172080]
[43]
Ding, G.J.; Zhu, Y.J.; Qi, C.; Lu, B.Q.; Wu, J.; Chen, F. Porous microspheres of amorphous calcium phosphate: block copolymer templated microwave-assisted hydrothermal synthesis and application in drug delivery. J. Colloid Interface Sci., 2015, 443, 72-79.
[http://dx.doi.org/10.1016/j.jcis.2014.12.004] [PMID: 25535849]
[44]
Ding, G.J.; Zhu, Y.J.; Qi, C.; Lu, B.Q.; Chen, F.; Wu, J. Porous hollow microspheres of amorphous calcium phosphate: soybean lecithin templated microwave-assisted hydrothermal synthesis and application in drug delivery. J. Mater. Chem. B Mater. Biol. Med., 2015, 3(9), 1823-1830.
[http://dx.doi.org/10.1039/C4TB01862A] [PMID: 32262255]
[45]
Qi, C.; Zhu, Y.J.; Sun, T.W.; Wu, J.; Chen, F. Microwave-assisted hydrothermal rapid synthesis of amorphous calcium phosphate mesoporous microspheres using adenosine 5′-diphosphate and application in pH-responsive drug delivery. Chem. Asian J., 2015, 10(11), 2503-2511.
[http://dx.doi.org/10.1002/asia.201500667] [PMID: 26248600]
[46]
Qi, C.; Zhu, Y.J.; Chen, F. Fructose 1,6-bisphosphate trisodium salt as a new phosphorus source for the rapid microwave synthesis of porous calcium-phosphate microspheres and their application in drug delivery. Chem. Asian J., 2013, 8(1), 88-94.
[http://dx.doi.org/10.1002/asia.201200901] [PMID: 23192854]
[47]
Qi, C.; Zhu, Y.J.; Zhang, Y.G.; Jiang, Y.Y.; Wu, J.; Chen, F. Vesicle-like nanospheres of amorphous calcium phosphate: sonochemical synthesis using the adenosine 5′-triphosphate disodium salt and their application in pH-responsive drug delivery. J. Mater. Chem. B Mater. Biol. Med., 2015, 3(37), 7347-7354.
[http://dx.doi.org/10.1039/C5TB01340B] [PMID: 32262761]
[48]
Ding, G.J.; Zhu, Y.J.; Cheng, G.F.; Ruan, Y.J.; Qi, C.; Lu, B.Q.; Chen, F.; Wu, J. Porous microspheres of casein/amorphous calcium phosphate nanocomposite: room temperature synthesis and application in drug delivery. Curr. Nanosci., 2016, 12, 70-78.
[http://dx.doi.org/10.2174/1573413711666150730204449]
[49]
Huang, S.; Li, C.; Xiao, Q. Yolk@cage-shell hollow mesoporous monodispersion nanospheres of amorphous calcium phosphate for drug delivery with high loading capacity. Nanoscale Res. Lett., 2017, 12(1), 275.
[http://dx.doi.org/10.1186/s11671-017-2051-7] [PMID: 28410554]
[50]
Yoshikawa, H.; Myoui, A. Bone tissue engineering with porous hydroxyapatite ceramics. J. Artif. Organs, 2005, 8(3), 131-136.
[http://dx.doi.org/10.1007/s10047-005-0292-1] [PMID: 16235028]
[51]
Zhou, H.; Lee, J. Nanoscale hydroxyapatite particles for bone tissue engineering. Acta Biomater., 2011, 7(7), 2769-2781.
[http://dx.doi.org/10.1016/j.actbio.2011.03.019] [PMID: 21440094]
[52]
Sun, F.; Zhou, H.; Lee, J. Various preparation methods of highly porous hydroxyapatite/polymer nanoscale biocomposites for bone regeneration. Acta Biomater., 2011, 7(11), 3813-3828.
[http://dx.doi.org/10.1016/j.actbio.2011.07.002] [PMID: 21784182]
[53]
Ma, M.Y.; Zhu, Y.J.; Li, L.; Cao, S.W. Nanostructured porous hollow ellipsoidal capsules of hydroxyapatite and calcium silicate: preparation and application in drug delivery. J. Mater. Chem., 2008, 18, 2722-2727.
[http://dx.doi.org/10.1039/b800389k]
[54]
Wang, K.W.; Zhu, Y.J.; Chen, X.Y.; Zhai, W.Y.; Wang, Q.; Chen, F.; Chang, J.; Duan, Y.R. Flower-like hierarchically nanostructured hydroxyapatite hollow spheres: facile preparation and application in anticancer drug cellular delivery. Chem. Asian J., 2010, 5(12), 2477-2482.
[http://dx.doi.org/10.1002/asia.201000463] [PMID: 20865772]
[55]
Qi, C.; Zhu, Y.J.; Lu, B.Q.; Zhao, X.Y.; Zhao, J.; Chen, F. Hydroxyapatite nanosheet-assembled porous hollow microspheres: DNA-templated hydrothermal synthesis, drug delivery and protein adsorption. J. Mater. Chem., 2012, 22(42), 22642-22650.
[http://dx.doi.org/10.1039/c2jm35280j]
[56]
Qi, C.; Zhu, Y.J.; Lu, B.Q.; Zhao, X.Y.; Zhao, J.; Chen, F.; Wu, J. Hydroxyapatite hierarchically nanostructured porous hollow microspheres: rapid, sustainable microwave-hydrothermal synthesis by using creatine phosphate as an organic phosphorus source and application in drug delivery and protein adsorption. Chemistry, 2013, 19(17), 5332-5341.
[http://dx.doi.org/10.1002/chem.201203886] [PMID: 23460360]
[57]
Zhao, X.Y.; Zhu, Y.J.; Qi, C.; Chen, F.; Lu, B.Q.; Zhao, J.; Wu, J. Hierarchical hollow hydroxyapatite microspheres: microwave-assisted rapid synthesis by using pyridoxal-5′-phosphate as a phosphorus source and application in drug delivery. Chem. Asian J., 2013, 8(6), 1313-1320.
[http://dx.doi.org/10.1002/asia.201300142] [PMID: 23554329]
[58]
Yu, Y.D.; Zhu, Y.J.; Qi, C.; Wu, J. Hydroxyapatite nanorod-assembled hierarchical microflowers: rapid synthesis via microwave hydrothermal transformation of CaHPO4 and their application in protein/drug delivery. Ceram. Int., 2017, 43(8), 6511-6518.
[http://dx.doi.org/10.1016/j.ceramint.2017.02.073]
[59]
Koppala, S.; Swamiappan, S.; Gangarajula, Y.; Xu, L.; Sadasivuni, K.K.; Ponnamma, D.; Rajagopalan, V. Calcium deficiency in hydroxyapatite and its drug delivery applications. Micro & Nano Lett., 2018, 13(4), 562-564.
[http://dx.doi.org/10.1049/mnl.2016.0675]
[60]
Ignjatović, N.L.; Sakač, M.; Kuzminac, I.; Kojić, V.; Marković, S.; Vasiljević-Radović, D.; Wu, V.M.; Uskoković, V.; Uskoković, D.P. Chitosan oligosaccharide lactate coated hydroxyapatite nanoparticles as a vehicle for the delivery of steroid drugs and the targeting of breast cancer cells. J. Mater. Chem. B Mater. Biol. Med., 2018, 6(43), 6957-6968.
[http://dx.doi.org/10.1039/C8TB01995A] [PMID: 30931125]
[61]
Murata, T.; Kutsuna, T.; Kurohara, K.; Shimizu, K.; Tomeoku, A.; Arai, N. Evaluation of a new hydroxyapatite nanoparticle as a drug delivery system to oral squamous cell carcinoma cells. Anticancer Res., 2018, 38(12), 6715-6720.
[http://dx.doi.org/10.21873/anticanres.13040] [PMID: 30504381]
[62]
Yang, P.; Quan, Z.; Li, C.; Kang, X.; Lian, H.; Lin, J. Bioactive, luminescent and mesoporous europium-doped hydroxyapatite as a drug carrier. Biomaterials, 2008, 29(32), 4341-4347.
[http://dx.doi.org/10.1016/j.biomaterials.2008.07.042] [PMID: 18715638]
[63]
Stanic, V.; Dimitrijevic, S.; Antic-Stankovic, J.; Mitric, M.; Jokic, B.; Plecas, I.B.; Raicevic, S. Synthesis, characterization and antimicrobial activity of copper and zinc-doped hydroxyapatite nanopowders. Appl. Surf. Sci., 2010, 256, 6083-6089.
[http://dx.doi.org/10.1016/j.apsusc.2010.03.124]
[64]
Stanic, V.; Janackovic, D.; Dimitrijevic, S.; Tanaskovic, S.B.; Mitric, M.; Pavlovic, M.S.; Krstic, A.; Jovanovic, D.; Raicevic, S. Synthesis of antimicrobial monophase silver-doped hydroxyapatite nanopowders for bone tissue engineering. Appl. Surf. Sci., 2011, 257, 4510-4518.
[http://dx.doi.org/10.1016/j.apsusc.2010.12.113]
[65]
Chen, F.; Huang, P.; Zhu, Y.J.; Wu, J.; Zhang, C.L.; Cui, D.X. The photoluminescence, drug delivery and imaging properties of multifunctional Eu3+/Gd3+ dual-doped hydroxyapatite nanorods. Biomaterials, 2011, 32(34), 9031-9039.
[http://dx.doi.org/10.1016/j.biomaterials.2011.08.032] [PMID: 21875748]
[66]
Chen, F.; Zhu, Y.J.; Zhang, K.H.; Wu, J.; Wang, K.W.; Tang, Q.L.; Mo, X.M. Europium-doped amorphous calcium phosphate porous nanospheres: preparation and application as luminescent drug carriers. Nanoscale Res. Lett., 2011, 6(1), 67.
[http://dx.doi.org/10.1186/1556-276X-6-67] [PMID: 21711603]
[67]
Chen, F.; Huang, P.; Zhu, Y.J.; Wu, J.; Cui, D.X. Multifunctional Eu3+/Gd3+ dual-doped calcium phosphate vesicle-like nanospheres for sustained drug release and imaging. Biomaterials, 2012, 33(27), 6447-6455.
[http://dx.doi.org/10.1016/j.biomaterials.2012.05.059] [PMID: 22721725]
[68]
Chen, F.; Huang, P.; Qi, C.; Lu, B.Q.; Zhao, X.Y.; Li, C.; Wu, J.; Cui, D.X.; Zhu, Y.J. Multifunctional biodegradable mesoporous microspheres of Eu3+-doped amorphous calcium phosphate: microwave-assisted preparation, pH-sensitive drug release, and bioimaging application. J. Mater. Chem. B Mater. Biol. Med., 2014, 2(41), 7132-7140.
[http://dx.doi.org/10.1039/C4TB01193G] [PMID: 32261791]
[69]
Shang, H.B.; Chen, F.; Wu, J.; Qi, C.; Lu, B.Q.; Chen, X.; Zhu, Y.J. Multifunctional biodegradable terbium-doped calcium phosphate nanoparticles: facile preparation, pH-sensitive drug release and in vitro bioimaging. RSC Advances, 2014, 4, 53122-53129.
[http://dx.doi.org/10.1039/C4RA09902H]
[70]
Yu, W.; Sun, T.W.; Qi, C.; Ding, Z.; Zhao, H.; Chen, F.; Chen, D.; Zhu, Y.J.; Shi, Z.; He, Y. Strontium-doped amorphous calcium phosphate porous microspheres synthesized through a microwave-hydrothermal method using fructose 1,6-bisphosphate as an organic phosphorus source: application in drug delivery and enhanced bone regeneration. ACS Appl. Mater. Interfaces, 2017, 9(4), 3306-3317.
[http://dx.doi.org/10.1021/acsami.6b12325] [PMID: 28068758]
[71]
Lu, Y.R.; Gou, M.Y.; Zhang, L.Y.; Li, L.; Wang, T.T.; Wang, C.G.; Su, Z.M. Facile one-pot synthesis of hollow mesoporous fluorescent Gd2O3:Eu/calcium phosphate nanospheres for simultaneous dual-modal imaging and pH-responsive drug delivery. Dyes Pigm., 2017, 147, 514-522.
[http://dx.doi.org/10.1016/j.dyepig.2017.08.043]
[72]
Yu, W.; Sun, T.W.; Ding, Z.; Qi, C.; Zhao, H.; Chen, F.; Shi, Z.; Zhu, Y.J.; Chen, D.; He, Y. Copper-doped mesoporous hydroxyapatite microspheres synthesized by a microwave-hydrothermal method using creatine phosphate as an organic phosphorus source: application in drug delivery and enhanced bone regeneration. J. Mater. Chem. B Mater. Biol. Med., 2017, 5(5), 1039-1052.
[http://dx.doi.org/10.1039/C6TB02747D] [PMID: 32263882]
[73]
Kim, H.; Mondal, S.; Bharathiraja, S.; Manivasagan, P.; Moorthy, M.S.; Oh, J. Optimized Zn-doped hydroxyapatite/doxorubicin bioceramics system for efficient drug delivery and tissue engineering application. Ceram. Int., 2018, 44, 6062-6071.
[http://dx.doi.org/10.1016/j.ceramint.2017.12.235]
[74]
Jain, S.K.; Awasthi, A.M.; Jain, N.K.; Agrawal, G.P. Calcium silicate based microspheres of repaglinide for gastroretentive floating drug delivery: preparation and in vitro characterization. J. Control. Release, 2005, 107(2), 300-309.
[http://dx.doi.org/10.1016/j.jconrel.2005.06.007] [PMID: 16095748]
[75]
Xu, S.; Lin, K.; Wang, Z.; Chang, J.; Wang, L.; Lu, J.; Ning, C. Reconstruction of calvarial defect of rabbits using porous calcium silicate bioactive ceramics. Biomaterials, 2008, 29(17), 2588-2596.
[http://dx.doi.org/10.1016/j.biomaterials.2008.03.013] [PMID: 18378303]
[76]
Li, H.; Chang, J. Stimulation of proangiogenesis by calcium silicate bioactive ceramic. Acta Biomater., 2013, 9(2), 5379-5389.
[http://dx.doi.org/10.1016/j.actbio.2012.10.019] [PMID: 23088882]
[77]
Zhu, Y.J.; Sham, T.K. The potential of calcium silicate hydrate as a carrier of ibuprofen. Expert Opin. Drug Deliv., 2014, 11(9), 1337-1342.
[http://dx.doi.org/10.1517/17425247.2014.923399] [PMID: 24857363]
[78]
Wu, J.; Zhu, Y.J.; Cao, S.W.; Chen, F. Hierachically nanostructured mesoporous spheres of calcium silicate hydrate: surfactant-free sonochemical synthesis and drug-delivery system with ultrahigh drug-loading capacity. Adv. Mater., 2010, 22(6), 749-753.
[http://dx.doi.org/10.1002/adma.200903020] [PMID: 20217783]
[79]
Wu, J.; Zhu, Y.J.; Chen, F. Calcium silicate hydrate ultrathin nanosheets with large specific surface areas: synthesis, crystallization, layered self-assembly and applications as excellent adsorbents for drug, protein and metal ions. Small, 2013, 9, 2911-2925.
[http://dx.doi.org/10.1002/smll.201300097] [PMID: 23585365]
[80]
Guo, X.; Wu, J.; Yiu, Y.M.; Hu, Y.; Zhu, Y.J.; Sham, T.K. Drug-nanocarrier interaction-tracking the local structure of calcium silicate upon ibuprofen loading with X-ray absorption near edge structure (XANES). Phys. Chem. Chem. Phys., 2013, 15(36), 15033-15040.
[http://dx.doi.org/10.1039/c3cp50699a] [PMID: 23925643]
[81]
Guo, X.; Wang, Z.; Wu, J.; Wang, J.; Zhu, Y.J.; Sham, T.K. Imaging of drug loading distributions in individual microspheres of calcium silicate hydrate-an X-ray spectromicroscopy study. Nanoscale, 2015, 7(15), 6767-6773.
[http://dx.doi.org/10.1039/C4NR07471H] [PMID: 25804516]
[82]
Guo, X.; Wang, Z.; Wu, J.; Yiu, Y.M.; Hu, Y.; Zhu, Y.J.; Sham, T.K. Tracking drug loading capacities of calcium silicate hydrate carrier: a comparative X-ray absorption near edge structures study. J. Phys. Chem. B, 2015, 119(31), 10052-10059.
[http://dx.doi.org/10.1021/acs.jpcb.5b04115] [PMID: 26162602]
[83]
Guo, X.X.; Wang, Z.Q.; Wu, J.; Hu, Y.F.; Wang, J.; Zhu, Y.J.; Sham, T.K. Tracking the transformations of mesoporous microspheres of calcium silicate hydrate at the nanoscale upon ibuprofen release: a XANES and STXM study. CrystEngComm, 2015, 17, 4117-4124.
[http://dx.doi.org/10.1039/C5CE00500K]
[84]
Ignjatović, N.; Tomić, S.; Dakić, M.; Miljković, M.; Plavsić, M.; Uskoković, D. Synthesis and properties of hydroxyapatite/poly-L-lactide composite biomaterials. Biomaterials, 1999, 20(9), 809-816.
[http://dx.doi.org/10.1016/S0142-9612(98)00234-8] [PMID: 10226707]
[85]
Azevedo, M.C.; Reis, R.L.; Claase, M.B.; Grijpma, D.W.; Feijen, J. Development and properties of polycaprolactone/hydroxyapatite composite biomaterials. J. Mater. Sci. Mater. Med., 2003, 14(2), 103-107.
[http://dx.doi.org/10.1023/A:1022051326282] [PMID: 15348480]
[86]
Pérez, R.A.; Won, J.E.; Knowles, J.C.; Kim, H.W. Naturally and synthetic smart composite biomaterials for tissue regeneration. Adv. Drug Deliv. Rev., 2013, 65(4), 471-496.
[http://dx.doi.org/10.1016/j.addr.2012.03.009] [PMID: 22465488]
[87]
Meng, L.Y.; Wang, B.; Ma, M.G.; Zhu, J.F. Cellulose-based nanocarriers as platforms for cancer therapy. Curr. Pharm. Des., 2017, 23(35), 5292-5300.
[http://dx.doi.org/10.2174/1381612823666171031111950] [PMID: 29086678]
[88]
Tang, Q.L.; Zhu, Y.J.; Duan, Y.R.; Wang, Q.; Wang, K.W.; Cao, S.W.; Chen, F.; Wu, J. Porous nanocomposites of PEG-PLA/calcium phosphate: room-temperature synthesis and its application in drug delivery. Dalton Trans., 2010, 39(18), 4435-4439.
[http://dx.doi.org/10.1039/b925779a] [PMID: 20422101]
[89]
Wang, K.W.; Zhu, Y.J.; Chen, F.; Cao, S.W. Calcium phosphate/block copolymer hybrid porous nanospheres: preparation and application in drug delivery. Mater. Lett., 2010, 64(21), 2299-2301.
[http://dx.doi.org/10.1016/j.matlet.2010.07.060]
[90]
Zhao, X.Y.; Zhu, Y.J.; Chen, F.; Lu, B.Q.; Qi, C.; Zhao, J.; Wu, J. Calcium phosphate hybrid nanoparticles: self-assembly formation, characterization, and application as an anticancer drug nanocarrier. Chem. Asian J., 2013, 8(6), 1306-1312.
[http://dx.doi.org/10.1002/asia.201300083] [PMID: 23589508]
[91]
Wu, J.; Zhu, Y.J.; Chen, F.; Zhao, X.Y.; Zhao, J.; Qi, C. Amorphous calcium silicate hydrate/block copolymer hybrid nanoparticles: synthesis and application as drug carriers. Dalton Trans., 2013, 42(19), 7032-7040.
[http://dx.doi.org/10.1039/c3dt50143d] [PMID: 23511873]
[92]
Gil, S.; Mano, J.F. Magnetic composite biomaterials for tissue engineering. Biomater. Sci., 2014, 2(6), 812-818.
[http://dx.doi.org/10.1039/C4BM00041B] [PMID: 32481815]
[93]
Diez-Pascual, A.M.; Diez-Vicente, A.L. Magnetic Fe3O4@poly(propylene fumarate-co- ethylene glycol) core-shell biomaterials. RSC Advances, 2017, 7, 10221-10234.
[http://dx.doi.org/10.1039/C6RA27446C]
[94]
Ma, M.G.; Zhu, J.F.; Li, S.M.; Jia, N.; Sun, R.C. Nanocomposites of cellulose/iron oxide: influence of synthesis conditions on their morphological behavior and thermal stability. Mater. Sci. Eng. C, 2012, 32(6), 1511-1517.
[http://dx.doi.org/10.1016/j.msec.2012.04.033] [PMID: 24364953]
[95]
Chen, F.; Li, C.; Zhu, Y.J.; Zhao, X.Y.; Lu, B.Q.; Wu, J. Magnetic nanocomposite of hydroxyapatite ultrathin nanosheets/Fe3O4 nanoparticles: microwave-assisted rapid synthesis and application in pH-responsive drug release. Biomater. Sci., 2013, 1(10), 1074-1081.
[http://dx.doi.org/10.1039/c3bm60086f] [PMID: 32481873]
[96]
Lu, B.Q.; Zhu, Y.J.; Ao, H.Y.; Qi, C.; Chen, F. Synthesis and characterization of magnetic iron oxide/calcium silicate mesoporous nanocomposites as a promising vehicle for drug delivery. ACS Appl. Mater. Interfaces, 2012, 4(12), 6969-6974.
[http://dx.doi.org/10.1021/am3021284] [PMID: 23210766]
[97]
Lu, B.Q.; Zhu, Y.J.; Cheng, G.F.; Ruan, Y.J. Synthesis and application in drug delivery of hollow-core-double-shell magnetic iron oxide/silica/calcium silicate nanocomposites. Mater. Lett., 2013, 104, 53-56.
[http://dx.doi.org/10.1016/j.matlet.2013.04.005]
[98]
Lu, B.Q.; Zhu, Y.J.; Chen, F.; Qi, C.; Zhao, X.Y.; Zhao, J. Core-shell hollow microspheres of magnetic iron oxide@amorphous calcium phosphate: synthesis using adenosine 5′-triphosphate and application in pH-responsive drug delivery. Chem. Asian J., 2014, 9(10), 2908-2914.
[http://dx.doi.org/10.1002/asia.201402319] [PMID: 25100227]
[99]
Li, G.; Chen, Y.; Zhang, L.; Zhang, M.; Li, S.; Li, L.; Wang, T.; Wang, C. Facile Approach to synthesize gold nanorod@polyacrylic acid/calcium phosphate yolk-shell nanoparticles for dual-mode imaging and pH/NIR-responsive drug delivery. Nano-Micro Lett., 2018, 10(1), 7.
[http://dx.doi.org/10.1007/s40820-017-0155-3] [PMID: 30393656]
[100]
Zhang, Y.G.; Zhu, Y.J.; Chen, F.; Sun, T.W. A novel composite scaffold comprising ultralong hydroxyapatite microtubes and chitosan: preparation and application in drug delivery. J. Mater. Chem. B Mater. Biol. Med., 2017, 5(21), 3898-3906.
[http://dx.doi.org/10.1039/C6TB02576E] [PMID: 32264251]
[101]
Yao, C.; Zhu, J.; Xie, A.; Shen, Y.; Li, H.; Zheng, B.; Wei, Y. Graphene oxide and creatine phosphate disodium dual template-directed synthesis of GO/hydroxyapatite and its application in drug delivery. Mater. Sci. Eng. C, 2017, 73, 709-715.
[http://dx.doi.org/10.1016/j.msec.2016.11.083] [PMID: 28183664]
[102]
Sarkar, C.; Chowdhuri, A.R.; Kumar, A.; Laha, D.; Garai, S.; Chakraborty, J.; Sahu, S.K. One pot synthesis of carbon dots decorated carboxymethyl cellulose- hydroxyapatite nanocomposite for drug delivery, tissue engineering and Fe3+ ion sensing. Carbohydr. Polym., 2018, 181, 710-718.
[http://dx.doi.org/10.1016/j.carbpol.2017.11.091] [PMID: 29254027]
[103]
Song, Z.; Liu, Y.; Shi, J.; Ma, T.; Zhang, Z.; Ma, H.; Cao, S. Hydroxyapatite/mesoporous silica coated gold nanorods with improved degradability as a multi-responsive drug delivery platform. Mater. Sci. Eng. C, 2018, 83, 90-98.
[http://dx.doi.org/10.1016/j.msec.2017.11.012] [PMID: 29208292]
[104]
Pajchel, L.; Kolodziejski, W. Synthesis and characterization of MCM-48/hydroxyapatite composites for drug delivery: ibuprofen incorporation, location and release studies. Mater. Sci. Eng. C, 2018, 91, 734-742.
[http://dx.doi.org/10.1016/j.msec.2018.06.028] [PMID: 30033308]
[105]
Thenmozhi, R.; Moorthy, M.S.; Sivaguru, J.; Manivasagan, P.; Bharathiraja, S.; Oh, Y.O.; Oh, J. Synthesis of silica-coated magnetic hydroxyapatite composites for drug delivery applications. J. Nanosci. Nanotechnol., 2019, 19(4), 1951-1958.
[http://dx.doi.org/10.1166/jnn.2019.15399] [PMID: 30486935]
[106]
Ren, Y.; Babaie, E.; Lin, B.; Bhaduri, S.B. Microwave-assisted magnesium phosphate coating on the AZ31 magnesium alloy. Biomed. Mater., 2017, 12(4)045026
[http://dx.doi.org/10.1088/1748-605X/aa78c0] [PMID: 28604359]
[107]
Qi, C.; Zhu, Y.J.; Lu, B.Q.; Ding, G.J.; Sun, T.W.; Chen, F.; Wu, J. Microwave-assisted rapid synthesis of magnesium phosphate hydrate nanosheets and their application in drug delivery and protein adsorption. J. Mater. Chem. B Mater. Biol. Med., 2014, 2(48), 8576-8586.
[http://dx.doi.org/10.1039/C4TB01473A] [PMID: 32262216]
[108]
Qi, C.; Zhu, Y.J.; Chen, F.; Wu, J. Porous microspheres of magnesium whitlockite and amorphous calcium magnesium phosphate: microwave-assisted rapid synthesis using creatine phosphate, and application in drug delivery. J. Mater. Chem. B Mater. Biol. Med., 2015, 3(39), 7775-7786.
[http://dx.doi.org/10.1039/C5TB01106J] [PMID: 32264586]
[109]
Sun, T.W.; Zhu, Y.J.; Qi, C.; Chen, F.; Jiang, Y.Y.; Zhang, Y.G.; Wu, J.; Wu, C. Templated solvothermal synthesis of magnesium silicate hollow nanospheres with ultrahigh specific surface area and their application in high-performance protein adsorption and drug delivery. J. Mater. Chem. B Mater. Biol. Med., 2016, 4(19), 3257-3268.
[http://dx.doi.org/10.1039/C5TB02632F] [PMID: 32263261]

Rights & Permissions Print Cite
© 2024 Bentham Science Publishers | Privacy Policy