[1]
Hamilton, B.A.; Frankel, W.N.; Kerrebrock, A.W.; Hawkins, T.L.; FitzHugh, W.; Kusumi, K.; Russell, L.B.; Mueller, K.L.; van Berkel, V.; Birren, B.W.; Kruglyak, L.; Lander, E.S. Disruption of the nuclear hormone receptor RORalpha in staggerer mice. Nature, 1996, 379(6567), 736-739.
[2]
Steinmayr, M.; Andre, E.; Conquet, F.; Rondi-Reig, L.; Delhaye-Bouchaud, N.; Auclair, N.; Daniel, H.; Crepel, F.; Mariani, J.; Sotelo, C.; Becker-Andre, M. Staggerer phenotype in retinoid-related orphan receptor alpha-deficient mice. Proc. Natl. Acad. Sci. USA, 1998, 95(7), 3960-3965.
[3]
Medvedev, A.; Yan, Z.H.; Hirose, T.; Giguere, V.; Jetten, A.M. Cloning of a cDNA encoding the murine orphan receptor RZR/ROR gamma and characterization of its response element. Gene, 1996, 181(1-2), 199-206.
[4]
Jetten, A.M. Retinoid-related orphan receptors (RORs): Critical roles in development, immunity, circadian rhythm, and cellular metabolism. Nucl. Recept. Signal., 2009, 7e003
[5]
Lau, P.; Fitzsimmons, R.L.; Pearen, M.A.; Watt, M.J.; Muscat, G.E. Homozygous staggerer (sg/sg) mice display improved insulin sensitivity and enhanced glucose uptake in skeletal muscle. Diabetologia, 2011, 54(5), 1169-1180.
[6]
Lau, P.; Fitzsimmons, R.L.; Raichur, S.; Wang, S.C.; Lechtken, A.; Muscat, G.E. The orphan nuclear receptor, RORalpha, regulates gene expression that controls lipid metabolism: Staggerer (SG/SG) mice are resistant to diet-induced obesity. J. Biol. Chem., 2008, 283(26), 18411-18421.
[7]
Lau, P.; Tuong, Z.K.; Wang, S.C.; Fitzsimmons, R.L.; Goode, J.M.; Thomas, G.P.; Cowin, G.J.; Pearen, M.A.; Mardon, K.; Stow, J.L.; Muscat, G.E. Roralpha deficiency and decreased adiposity are associated with induction of thermogenic gene expression in subcutaneous white adipose and brown adipose tissue. Am. J. Physiol. Endocrinol. Metab., 2015, 308(2), E159-E171.
[8]
Jarvis, C.I.; Staels, B.; Brugg, B.; Lemaigre-Dubreuil, Y.; Tedgui, A.; Mariani, J. Age-related phenotypes in the staggerer mouse expand the RORalpha nuclear receptor’s role beyond the cerebellum. Mol. Cell. Endocrinol., 2002, 186(1), 1-5.
[9]
Kim, H.J.; Han, Y.H.; Na, H.; Kim, J.Y.; Kim, T.; Kim, H.J.; Shin, C.; Lee, J.W.; Lee, M.O. Liver-specific deletion of RORalpha aggravates diet-induced nonalcoholic steatohepatitis by inducing mitochondrial dysfunction. Sci. Rep., 2017, 7(1), 16041.
[10]
Dussault, I.; Fawcett, D.; Matthyssen, A.; Bader, J.A.; Giguere, V. Orphan nuclear receptor ROR alpha-deficient mice display the cerebellar defects of staggerer. Mech. Dev., 1998, 70(1-2), 147-153.
[11]
Kallen, J.; Schlaeppi, J.M.; Bitsch, F.; Delhon, I.; Fournier, B. Crystal structure of the human RORalpha Ligand binding domain in complex with cholesterol sulfate at 2.2 A. J. Biol. Chem., 2004, 279(14), 14033-14038.
[12]
Wang, Y.; Kumar, N.; Crumbley, C.; Griffin, P.R.; Burris, T.P. A second class of nuclear receptors for oxysterols: Regulation of RORalpha and RORgamma activity by 24S-hydroxycholesterol (cerebrosterol). Biochim. Biophys. Acta, 2010, 1801(8), 917-923.
[13]
Wang, Y.; Kumar, N.; Solt, L.A.; Richardson, T.I.; Helvering, L.M.; Crumbley, C.; Garcia-Ordonez, R.D.; Stayrook, K.R.; Zhang, X.; Novick, S.; Chalmers, M.J.; Griffin, P.R.; Burris, T.P. Modulation of retinoic acid receptor-related orphan receptor alpha and gamma activity by 7-oxygenated sterol ligands. J. Biol. Chem., 2010, 285(7), 5013-5025.
[14]
Dubernet, M.; Duguet, N.; Colliandre, L.; Berini, C.; Helleboid, S.; Bourotte, M.; Daillet, M.; Maingot, L.; Daix, S.; Delhomel, J.F.; Morin-Allory, L.; Routier, S.; Walczak, R. Identification of new nonsteroidal RORalpha ligands; Related structure-activity relationships and docking studies. ACS Med. Chem. Lett., 2013, 4(6), 504-508.
[15]
Helleboid, S.; Haug, C.; Lamottke, K.; Zhou, Y.; Wei, J.; Daix, S.; Cambula, L.; Rigou, G.; Hum, D.W.; Walczak, R. The identification of naturally occurring neoruscogenin as a bioavailable, potent, and high-affinity agonist of the nuclear receptor RORalpha (NR1F1). J. Biomol. Screen., 2014, 19(3), 399-406.
[16]
Kumar, N.; Kamenecka, T.; Lyda, B.; Khan, P.; Chang, M.R.; Garcia-Ordonez, R.D.; Cameron, M.; Ferguson, J.; Mercer, B.A.; Hodder, P.; Rosen, H.; Griffin, P.R. Identification of a novel selective inverse agonist probe and analogs for the Retinoic acid receptor- related Orphan Receptor Gamma (RORgamma). In: Probe Reports from the NIH Molecular Libraries Program; Bethesda (MD), 2010.
[17]
Lardone, P.J.; Guerrero, J.M.; Fernandez-Santos, J.M.; Rubio, A.; Martin-Lacave, I.; Carrillo-Vico, A. Melatonin synthesized by T lymphocytes as a ligand of the retinoic acid-related orphan receptor. J. Pineal Res., 2011, 51(4), 454-462.
[18]
Kumar, N.; Solt, L.A.; Conkright, J.J.; Wang, Y.; Istrate, M.A.; Busby, S.A.; Garcia-Ordonez, R.; Burris, T.P.; Griffin, P.R. The benzenesulfonamide T0901317 is a novel RORalpha/gamma inverse agonist. Mol. Pharmacol., 2010, 77, 228-236.
[19]
Wang, Y.; Kumar, N.; Nuhant, P.; Cameron, M.D.; Istrate, M.A.; Roush, W.R.; Griffin, P.R.; Burris, T.P. Identification of SR1078, a synthetic agonist for the orphan nuclear receptors RORA and RORG. ACS Chem. Biol., 2010, 1029-1034.
[20]
Kumar, N.; Kojetin, D.J.; Solt, L.A.; Kumar, K.G.; Nuhant, P.; Duckett, D.R.; Cameron, M.D.; Butler, A.A.; Roush, W.R.; Griffin, P.R.; Burris, T.P. Identification of SR3335 (ML-176): A synthetic ROR alpha selective inverse agonist. ACS Chem. Biol., 2011, 6(3), 218-222.
[21]
Solt, L.A.; Kumar, N.; Nuhant, P.; Wang, Y.J.; Lauer, J.L.; Liu, J.; Istrate, M.A.; Kamenecka, T.M.; Roush, W.R.; Vidovic, D.; Schurer, S.C.; Xu, J.H.; Wagoner, G.; Drew, P.D.; Griffin, P.R.; Burris, T.P. Suppression of T(H)17 differentiation and autoimmunity by a synthetic ROR ligand. Nature, 2011, 472(7344), 491-494.
[22]
Kumar, N.; Lyda, B.; Chang, M.R.; Lauer, J.L.; Solt, L.A.; Burris, T.P.; Kamenecka, T.M.; Griffin, P.R. Identification of SR2211: A potent synthetic RORgamma-selective modulator. ACS Chem. Biol., 2012, 7(4), 672-677.
[23]
Solt, L.A.; Kumar, N.; He, Y.; Kamenecka, T.M.; Griffin, P.R.; Burris, T.P. Identification of a selective RORgamma ligand that suppresses T(H)17 cells and stimulates T regulatory cells. ACS Chem. Biol., 2012, 7(9), 1515-1519.
[24]
Sheridan, C. Footrace to clinic heats up for T-cell nuclear receptor inhibitors. Nat. Biotechnol., 2013, 31(5), 370.
[25]
Gege, C. Retinoid-related orphan receptor gamma t (RORgammat) inhibitors from Vitae Pharmaceuticals (WO2015116904) and structure proposal for their Phase I candidate VTP-43742. Expert Opin. Ther. Pat., 2016, 26(6), 737-744.
[26]
Houck, K.A.; Borchert, K.M.; Hepler, C.D.; Thomas, J.S.; Bramlett, K.S.; Michael, L.F.; Burris, T.P. T0901317 is a dual LXR/FXR agonist. Mol. Genet. Metab., 2004, 83(1-2), 184-187.
[27]
Mitro, N.; Vargas, L.; Romeo, R.; Koder, A.; Saez, E. T0901317 is a potent PXR ligand: Implications for the biology ascribed to LXR. FEBS Lett., 2007, 581(9), 1721-1726.
[28]
Schultz, J.R.; Tu, H.; Luk, A.; Repa, J.J.; Medina, J.C.; Li, L.; Schwendner, S.; Wang, S.; Thoolen, M.; Mangelsdorf, D.J.; Lustig, K.D.; Shan, B. Role of LXRs in control of lipogenesis. Genes Dev., 2000, 14(22), 2831-2838.
[29]
Fauber, B.P.; de Leon Boenig, G.; Burton, B.; Eidenschenk, C.; Everett, C.; Gobbi, A.; Hymowitz, S.G.; Johnson, A.R.; Liimatta, M.; Lockey, P.; Norman, M.; Ouyang, W.; Rene, O.; Wong, H. Structure-based design of substituted hexafluoroisopropanol-arylsulfonamides as modulators of RORc. Bioorg. Med. Chem. Lett., 2013, 23(24), 6604-6609.
[30]
Brameld, K.A.; Kuhn, B.; Reuter, D.C.; Stahl, M. Small molecule conformational preferences derived from crystal structure data. A medicinal chemistry focused analysis. J. Chem. Inf. Model., 2008, 48(1), 1-24.
[31]
Liljevald, M.; Rehnberg, M.; Soderberg, M.; Ramnegard, M.; Borjesson, J.; Luciani, D.; Krutrok, N.; Branden, L.; Johansson, C.; Xu, X.; Bjursell, M.; Sjogren, A.K.; Hornberg, J.; Andersson, U.; Keeling, D.; Jirholt, J. Retinoid-related orphan receptor gamma (RORgamma) adult induced knockout mice develop lymphoblastic lymphoma. Autoimmun. Rev., 2016, 15(11), 1062-1070.
[32]
Ueda, E.; Kurebayashi, S.; Sakaue, M.; Backlund, M.; Koller, B.; Jetten, A.M. High incidence of T-cell lymphomas in mice deficient in the retinoid-related orphan receptor RORgamma. Cancer Res., 2002, 62(3), 901-909.
[33]
Guntermann, C.; Piaia, A.; Hamel, M.L.; Theil, D.; Rubic-Schneider, T.; Del Rio-Espinola, A.; Dong, L.; Billich, A.; Kaupmann, K.; Dawson, J.; Hoegenauer, K.; Orain, D.; Hintermann, S.; Stringer, R.; Patel, D.D.; Doelemeyer, A.; Deurinck, M.; Schumann, J. Retinoic-acid-orphan-receptor-C inhibition suppresses Th17 cells and induces thymic aberrations. JCI Insight, 2017, 2(5)e91127