Generic placeholder image

Medicinal Chemistry

Editor-in-Chief

ISSN (Print): 1573-4064
ISSN (Online): 1875-6638

Research Article

Discovery and Optimization of a Series of Sulfonamide Inverse Agonists for the Retinoic Acid Receptor-Related Orphan Receptor-α

Author(s): Christelle Doebelin, Yuanjun He, Sean Campbell, Philippe Nuhant, Naresh Kumar, Marcel Koenig, Ruben Garcia-Ordonez, Mi Ra Chang, William R. Roush, Li Lin, Susan Kahn, Michael D. Cameron, Patrick R. Griffin, Laura A. Solt* and Theodore M. Kamenecka*

Volume 15, Issue 6, 2019

Page: [676 - 684] Pages: 9

DOI: 10.2174/1573406415666190222124745

Price: $65

Abstract

Background: Despite a massive industry endeavor to develop RORγ-modulators for autoimmune disorders, there has been no indication of efforts to target the close family member RORα for similar indications. This may be due to the misconception that RORα is redundant to RORγ, or the inherent difficulty in cultivating tractable starting points for RORα. RORα-selective modulators would be useful tools to interrogate the biology of this understudied orphan nuclear receptor.

Objective: The goal of this research effort was to identify and optimize synthetic ligands for RORα starting from the known LXR agonist T0901317.

Methods: Fourty-five analogs of the sulfonamide lead (1) were synthesized and evaluated for their ability to suppress the transcriptional activity of RORα, RORγ, and LXRα in cell-based assays. Analogs were characterized by 1H-NMR, 13C-NMR, and LC-MS analysis. The pharmacokinetic profile of the most selective RORα inverse agonist was evaluated in rats with intraperitoneal (i.p.) and per oral (p.o.)dosing.

Results: Structure-activity relationship studies led to potent dual RORα/RORγ inverse agonists as well as RORα-selective inverse agonists (20, 28). LXR activity could be reduced by removing the sulfonamide nitrogen substituent. Attempts to improve the potency of these selective leads by varying substitution patterns throughout the molecule proved challenging.

Conclusion: The synthetic RORα-selective inverse agonists identified (20, 28) can be utilized as chemical tools to probe the function of RORα in vitro and in vivo.

Keywords: Nuclear Hormone Receptor (NR), Retinoic Acid Receptor-related Orphan Receptor (ROR), Liver X Receptor (LXR), Structure-Activity Relationship (SAR), Th17 cells, Autoimmune disorder.

Graphical Abstract

[1]
Hamilton, B.A.; Frankel, W.N.; Kerrebrock, A.W.; Hawkins, T.L.; FitzHugh, W.; Kusumi, K.; Russell, L.B.; Mueller, K.L.; van Berkel, V.; Birren, B.W.; Kruglyak, L.; Lander, E.S. Disruption of the nuclear hormone receptor RORalpha in staggerer mice. Nature, 1996, 379(6567), 736-739.
[2]
Steinmayr, M.; Andre, E.; Conquet, F.; Rondi-Reig, L.; Delhaye-Bouchaud, N.; Auclair, N.; Daniel, H.; Crepel, F.; Mariani, J.; Sotelo, C.; Becker-Andre, M. Staggerer phenotype in retinoid-related orphan receptor alpha-deficient mice. Proc. Natl. Acad. Sci. USA, 1998, 95(7), 3960-3965.
[3]
Medvedev, A.; Yan, Z.H.; Hirose, T.; Giguere, V.; Jetten, A.M. Cloning of a cDNA encoding the murine orphan receptor RZR/ROR gamma and characterization of its response element. Gene, 1996, 181(1-2), 199-206.
[4]
Jetten, A.M. Retinoid-related orphan receptors (RORs): Critical roles in development, immunity, circadian rhythm, and cellular metabolism. Nucl. Recept. Signal., 2009, 7e003
[5]
Lau, P.; Fitzsimmons, R.L.; Pearen, M.A.; Watt, M.J.; Muscat, G.E. Homozygous staggerer (sg/sg) mice display improved insulin sensitivity and enhanced glucose uptake in skeletal muscle. Diabetologia, 2011, 54(5), 1169-1180.
[6]
Lau, P.; Fitzsimmons, R.L.; Raichur, S.; Wang, S.C.; Lechtken, A.; Muscat, G.E. The orphan nuclear receptor, RORalpha, regulates gene expression that controls lipid metabolism: Staggerer (SG/SG) mice are resistant to diet-induced obesity. J. Biol. Chem., 2008, 283(26), 18411-18421.
[7]
Lau, P.; Tuong, Z.K.; Wang, S.C.; Fitzsimmons, R.L.; Goode, J.M.; Thomas, G.P.; Cowin, G.J.; Pearen, M.A.; Mardon, K.; Stow, J.L.; Muscat, G.E. Roralpha deficiency and decreased adiposity are associated with induction of thermogenic gene expression in subcutaneous white adipose and brown adipose tissue. Am. J. Physiol. Endocrinol. Metab., 2015, 308(2), E159-E171.
[8]
Jarvis, C.I.; Staels, B.; Brugg, B.; Lemaigre-Dubreuil, Y.; Tedgui, A.; Mariani, J. Age-related phenotypes in the staggerer mouse expand the RORalpha nuclear receptor’s role beyond the cerebellum. Mol. Cell. Endocrinol., 2002, 186(1), 1-5.
[9]
Kim, H.J.; Han, Y.H.; Na, H.; Kim, J.Y.; Kim, T.; Kim, H.J.; Shin, C.; Lee, J.W.; Lee, M.O. Liver-specific deletion of RORalpha aggravates diet-induced nonalcoholic steatohepatitis by inducing mitochondrial dysfunction. Sci. Rep., 2017, 7(1), 16041.
[10]
Dussault, I.; Fawcett, D.; Matthyssen, A.; Bader, J.A.; Giguere, V. Orphan nuclear receptor ROR alpha-deficient mice display the cerebellar defects of staggerer. Mech. Dev., 1998, 70(1-2), 147-153.
[11]
Kallen, J.; Schlaeppi, J.M.; Bitsch, F.; Delhon, I.; Fournier, B. Crystal structure of the human RORalpha Ligand binding domain in complex with cholesterol sulfate at 2.2 A. J. Biol. Chem., 2004, 279(14), 14033-14038.
[12]
Wang, Y.; Kumar, N.; Crumbley, C.; Griffin, P.R.; Burris, T.P. A second class of nuclear receptors for oxysterols: Regulation of RORalpha and RORgamma activity by 24S-hydroxycholesterol (cerebrosterol). Biochim. Biophys. Acta, 2010, 1801(8), 917-923.
[13]
Wang, Y.; Kumar, N.; Solt, L.A.; Richardson, T.I.; Helvering, L.M.; Crumbley, C.; Garcia-Ordonez, R.D.; Stayrook, K.R.; Zhang, X.; Novick, S.; Chalmers, M.J.; Griffin, P.R.; Burris, T.P. Modulation of retinoic acid receptor-related orphan receptor alpha and gamma activity by 7-oxygenated sterol ligands. J. Biol. Chem., 2010, 285(7), 5013-5025.
[14]
Dubernet, M.; Duguet, N.; Colliandre, L.; Berini, C.; Helleboid, S.; Bourotte, M.; Daillet, M.; Maingot, L.; Daix, S.; Delhomel, J.F.; Morin-Allory, L.; Routier, S.; Walczak, R. Identification of new nonsteroidal RORalpha ligands; Related structure-activity relationships and docking studies. ACS Med. Chem. Lett., 2013, 4(6), 504-508.
[15]
Helleboid, S.; Haug, C.; Lamottke, K.; Zhou, Y.; Wei, J.; Daix, S.; Cambula, L.; Rigou, G.; Hum, D.W.; Walczak, R. The identification of naturally occurring neoruscogenin as a bioavailable, potent, and high-affinity agonist of the nuclear receptor RORalpha (NR1F1). J. Biomol. Screen., 2014, 19(3), 399-406.
[16]
Kumar, N.; Kamenecka, T.; Lyda, B.; Khan, P.; Chang, M.R.; Garcia-Ordonez, R.D.; Cameron, M.; Ferguson, J.; Mercer, B.A.; Hodder, P.; Rosen, H.; Griffin, P.R. Identification of a novel selective inverse agonist probe and analogs for the Retinoic acid receptor- related Orphan Receptor Gamma (RORgamma). In: Probe Reports from the NIH Molecular Libraries Program; Bethesda (MD), 2010.
[17]
Lardone, P.J.; Guerrero, J.M.; Fernandez-Santos, J.M.; Rubio, A.; Martin-Lacave, I.; Carrillo-Vico, A. Melatonin synthesized by T lymphocytes as a ligand of the retinoic acid-related orphan receptor. J. Pineal Res., 2011, 51(4), 454-462.
[18]
Kumar, N.; Solt, L.A.; Conkright, J.J.; Wang, Y.; Istrate, M.A.; Busby, S.A.; Garcia-Ordonez, R.; Burris, T.P.; Griffin, P.R. The benzenesulfonamide T0901317 is a novel RORalpha/gamma inverse agonist. Mol. Pharmacol., 2010, 77, 228-236.
[19]
Wang, Y.; Kumar, N.; Nuhant, P.; Cameron, M.D.; Istrate, M.A.; Roush, W.R.; Griffin, P.R.; Burris, T.P. Identification of SR1078, a synthetic agonist for the orphan nuclear receptors RORA and RORG. ACS Chem. Biol., 2010, 1029-1034.
[20]
Kumar, N.; Kojetin, D.J.; Solt, L.A.; Kumar, K.G.; Nuhant, P.; Duckett, D.R.; Cameron, M.D.; Butler, A.A.; Roush, W.R.; Griffin, P.R.; Burris, T.P. Identification of SR3335 (ML-176): A synthetic ROR alpha selective inverse agonist. ACS Chem. Biol., 2011, 6(3), 218-222.
[21]
Solt, L.A.; Kumar, N.; Nuhant, P.; Wang, Y.J.; Lauer, J.L.; Liu, J.; Istrate, M.A.; Kamenecka, T.M.; Roush, W.R.; Vidovic, D.; Schurer, S.C.; Xu, J.H.; Wagoner, G.; Drew, P.D.; Griffin, P.R.; Burris, T.P. Suppression of T(H)17 differentiation and autoimmunity by a synthetic ROR ligand. Nature, 2011, 472(7344), 491-494.
[22]
Kumar, N.; Lyda, B.; Chang, M.R.; Lauer, J.L.; Solt, L.A.; Burris, T.P.; Kamenecka, T.M.; Griffin, P.R. Identification of SR2211: A potent synthetic RORgamma-selective modulator. ACS Chem. Biol., 2012, 7(4), 672-677.
[23]
Solt, L.A.; Kumar, N.; He, Y.; Kamenecka, T.M.; Griffin, P.R.; Burris, T.P. Identification of a selective RORgamma ligand that suppresses T(H)17 cells and stimulates T regulatory cells. ACS Chem. Biol., 2012, 7(9), 1515-1519.
[24]
Sheridan, C. Footrace to clinic heats up for T-cell nuclear receptor inhibitors. Nat. Biotechnol., 2013, 31(5), 370.
[25]
Gege, C. Retinoid-related orphan receptor gamma t (RORgammat) inhibitors from Vitae Pharmaceuticals (WO2015116904) and structure proposal for their Phase I candidate VTP-43742. Expert Opin. Ther. Pat., 2016, 26(6), 737-744.
[26]
Houck, K.A.; Borchert, K.M.; Hepler, C.D.; Thomas, J.S.; Bramlett, K.S.; Michael, L.F.; Burris, T.P. T0901317 is a dual LXR/FXR agonist. Mol. Genet. Metab., 2004, 83(1-2), 184-187.
[27]
Mitro, N.; Vargas, L.; Romeo, R.; Koder, A.; Saez, E. T0901317 is a potent PXR ligand: Implications for the biology ascribed to LXR. FEBS Lett., 2007, 581(9), 1721-1726.
[28]
Schultz, J.R.; Tu, H.; Luk, A.; Repa, J.J.; Medina, J.C.; Li, L.; Schwendner, S.; Wang, S.; Thoolen, M.; Mangelsdorf, D.J.; Lustig, K.D.; Shan, B. Role of LXRs in control of lipogenesis. Genes Dev., 2000, 14(22), 2831-2838.
[29]
Fauber, B.P.; de Leon Boenig, G.; Burton, B.; Eidenschenk, C.; Everett, C.; Gobbi, A.; Hymowitz, S.G.; Johnson, A.R.; Liimatta, M.; Lockey, P.; Norman, M.; Ouyang, W.; Rene, O.; Wong, H. Structure-based design of substituted hexafluoroisopropanol-arylsulfonamides as modulators of RORc. Bioorg. Med. Chem. Lett., 2013, 23(24), 6604-6609.
[30]
Brameld, K.A.; Kuhn, B.; Reuter, D.C.; Stahl, M. Small molecule conformational preferences derived from crystal structure data. A medicinal chemistry focused analysis. J. Chem. Inf. Model., 2008, 48(1), 1-24.
[31]
Liljevald, M.; Rehnberg, M.; Soderberg, M.; Ramnegard, M.; Borjesson, J.; Luciani, D.; Krutrok, N.; Branden, L.; Johansson, C.; Xu, X.; Bjursell, M.; Sjogren, A.K.; Hornberg, J.; Andersson, U.; Keeling, D.; Jirholt, J. Retinoid-related orphan receptor gamma (RORgamma) adult induced knockout mice develop lymphoblastic lymphoma. Autoimmun. Rev., 2016, 15(11), 1062-1070.
[32]
Ueda, E.; Kurebayashi, S.; Sakaue, M.; Backlund, M.; Koller, B.; Jetten, A.M. High incidence of T-cell lymphomas in mice deficient in the retinoid-related orphan receptor RORgamma. Cancer Res., 2002, 62(3), 901-909.
[33]
Guntermann, C.; Piaia, A.; Hamel, M.L.; Theil, D.; Rubic-Schneider, T.; Del Rio-Espinola, A.; Dong, L.; Billich, A.; Kaupmann, K.; Dawson, J.; Hoegenauer, K.; Orain, D.; Hintermann, S.; Stringer, R.; Patel, D.D.; Doelemeyer, A.; Deurinck, M.; Schumann, J. Retinoic-acid-orphan-receptor-C inhibition suppresses Th17 cells and induces thymic aberrations. JCI Insight, 2017, 2(5)e91127

Rights & Permissions Print Cite
© 2024 Bentham Science Publishers | Privacy Policy