[1]
Behbahani, N.S.; Rostamizadeh, K.; Yaftian, M.R.; Zamani, A.; Ahmadi, H. Covalently modified magnetite nanoparticles with PEG: Preparation and characterization as nano-adsorbent for removal of lead from wastewater. J. Environ. Health Sci. Eng., 2014, 12(1), 103.
[2]
Rahmani, M.; Kaykhaii, M.; Sasani, M. Application of Taguchi L16 design method for comparative study of ability of 3A zeolite in removal of Rhodamine B and Malachite green from environmental water samples. Spectrochim. Acta Part A Mol. Biomol. Spectroscopy., 2018, 188, 164-169.
[3]
Alimohammadi, V.; Sedighi, M.; Jabbari, E. Experimental study on efficient removal of total iron from wastewater using magnetic-modified multi-walled carbon nanotubes. Ecol. Eng., 2017, 102, 90-97.
[4]
Googerdchian, F.; Moheb, A.; Emadi, R.; Asgari, M. Optimization of Pb (II) ions adsorption on nanohydroxyapatite adsorbents by applying Taguchi method. J. Hazard. Mater., 2018, 349, 186-194.
[5]
Zendehdel, M.; Shoshtari-Yeganeh, B.; Khanmohamadi, H.; Cruciani, G. Removal of fluoride from aqueous solution by adsorption on NaP: HAp nanocomposite using response surface methodology. Proc. Safety Environ. Protec., 2017, 109, 172-191.
[6]
Srivastava, V.; Sharma, Y.C.; Sillanpää, M. Application of response surface methodology for optimization of Co (II) removal from synthetic wastewater by adsorption on NiO nanoparticles. J. Mol. Liquids, 2015, 211, 613-620.
[7]
Al-Qahtani, K.M. Biosorption of Cd+2 and Pb+2 on Cyperus laevigatus: Application of factorial design analysis. Life Sci. J., 2012, 9(4)
[8]
Geyikçi, F.; Büyükgüngör, H. Factorial experimental design for adsorption silver ions from water onto montmorillonite. Acta Geodyn. Geomater., 2013, 10, 363-370.
[9]
Behmaneshfar, A.; Ghashang, M.; Mohammad Shafiee, M.R.; Saffar-Teluri, A.; Fazlinia, A.; Esfandiari, H. Optimization of the preparation condition of 2, 4, 5-triphenyl-1H-imidazole over Ba-SO4 nanoparticles as catalyst using a response surface methodology (RSM). Curr. Nanosci., 2015, 11(1), 56-63.
[10]
Kazemi, M.; Aghakhani, M.; Haghshenas-Jazi, E.; Behmaneshfar, A. Optimization of the depth of penetration by welding input parameters in saw process using response surface methodology. Metallurg. Mater. Transact. B, 2016, 47(1), 714-719.
[11]
Lee, I.H.; Kuan, Y.-C.; Chern, J.-M. Factorial experimental design for recovering heavy metals from sludge with ion-exchange resin. J. Hazard. Mater. B 138, 2006, 10(3), 549-559.
[12]
Dave, S.; Sharma, R. Use of nanoparticles in water treatment: A review. Int. Res. J. Environ. Sci., 2015, 4(10), 103-106.
[13]
Lu, H.; Wang, J.; Stoller, M.; Wang, T.; Bao, Y.; Hao, H. An overview of nanomaterials for water and wastewater treatment. Adv. Mater. Sci. Eng., 2016, 2016 4964828
[14]
Montgomery, D.C. Design and analysis of experiments; John Wiley & Sons: New Jersey, 2017.
[15]
Angela, D.; Voss, D.; Draguljić, D. Design and analysis of experiments; Springer: New York, 1999.
[16]
Jahangiri-Rad, M.; Nabizadeh, R. Application of a two-level full factorial design in nitrate adsorption by pan-oxime-nano Fe2O3. Int. J. Adv. Sci. Eng. Technol, 2015, 8(3), 297-313.
[17]
Amin, M.M.; Bina, B.; Majd, A.M.; Pourzamani, H. Benzene removal by nano magnetic particles under continuous condition from aqueous solutions. Front. Environ. Sci. Eng., 2014, 8(3), 345-356.
[18]
Khani, R.; Sobhani, S.; Beyki, M. Highly selective and efficient removal of lead with magnetic nano-adsorbent: Multivariate optimization, isotherm and thermodynamic studies. J. Colloid Interface Sci., 2016, 466, 198-205.
[19]
Sheibani, A.; Zare-Khormizi, M. Application of factorial design for adsorption of thallium (III) ion from aqueous solutions by pistachio. Iranian J. Chem. Technol., 2012, 19, 48-51.
[20]
Zolgharnein, J.; Rastgordani, M. Optimization of simultaneous removal of binary mixture of indigo carmine and methyl orange dyes by cobalt hydroxide nano-particles through Taguchi method. J. Mol. Liquids., 2018, 262, 405-414.
[21]
Zirehpour, A.; Rahimpour, A.; Jahanshahi, M.; Peyravi, M. Mixed matrix membrane application for olive oil wastewater treatment: Process optimization based on Taguchi design method. J. Environ. Manage., 2014, 132, 113-120.
[22]
Mustafai, F.A.; Balouch, A.; Jalbani, N.; Bhanger, M.I.; Jagirani, M.S.; Kumar, A.; Tunio, A. Microwave-assisted synthesis of imprinted polymer for selective removal of arsenic from drinking water by applying Taguchi statistical method. European Polymer J., 2018, 109, 133-142.
[23]
Box, G.E.; Wilson, K.B. On the experimental attainment of optimum conditions. In: Breakthroughs in statistics; Springer: New York, NY, 1992; pp. 270-310.
[24]
Box, G.E.P.; Hunter, J.S. Multi-factor experimental designs for exploring response surfaces. Ann. Math. Stat., 1957, 28(1), 195-241.
[25]
Box, G.E.; Behnken, D.W. Some new three level designs for the study of quantitative variables. Technometrics, 1960, 2(4), 455-475.
[26]
Nguyen, N.K. Theory & methods: Cutting experimental designs into blocks. Australian New Zealand J. Stat., 2001, 43(3), 367-374.
[27]
Box, G.E.P.; Behnken, D.W. Some new three level second-order designs for surface fitting. In: Statistical Technical Research Group
Technical Report; Taylor & Francis: UK, Ltd, 1958.
[28]
Tayeb, A.M.; Tony, M.A.; Mansour, S.A. Application of Box–Behnken factorial design for parameters optimization of basic dye removal using nano-hematite photo-Fenton tool. Appl. Water Sci., 2018, 8(5), 138.
[29]
Srivastava, V.; Sharma, Y.C.; Sillanpää, M. Application of response surface methodology for optimization of Co (II) removal from synthetic wastewater by adsorption on NiO nanoparticles. J. Mol. Liquids., 2015, 211, 613-620.
[30]
Khoshnamvand, N.; Mostafapour, F.K.; Mohammadi, A.; Faraji, M. Response surface methodology (RSM) modeling to improve removal of ciprofloxacin from aqueous solutions in photocatalytic process using copper oxide nanoparticles (CuO/UV). AMB Express, 2018, 8(1), 48.
[31]
Yang, Y.; Zhou, Z.; Lu, C.; Chen, Y.; Ge, H.; Wang, L.; Cheng, C. Treatment of chemical cleaning wastewater and cost optimization by response surface methodology coupled nonlinear programming. J. Environ. Manage., 2017, 198, 12-20.
[32]
Dhiman, N.; Shukla, S.P.; Kisku, G.C. Statistical optimization of process parameters for removal of dyes from wastewater on chitosan cenospheres nanocomposite using response surface methodology. J. Cleaner Prod., 2017, 149, 597-606.
[33]
Zendehdel, M.; Shoshtari-Yeganeh, B.; Khanmohamadi, H.; Cruciani, G. Removal of fluoride from aqueous solution by adsorption on NaP: HAp nanocomposite using response surface methodology. Proc. Safety Environ. Protec., 2017, 109, 172-191.
[34]
Javanbakht, V.; Ghoreishi, S.M. Application of response surface methodology for optimization of lead removal from an aqueous solution by a novel superparamagnetic nanocomposite. Adsorpt. Sci. Technol., 2017, 35(1-2), 241-260.
[35]
Mourabet, M.; El Rhilassi, A.; El Boujaady, H.; Bennani-Ziatni, M.; El Hamri, R.; Taitai, A. Removal of fluoride from aqueous solution by adsorption on hydroxyapatite (HAp) using response surface methodology. J. Saudi Chem. Soc., 2015, 19(6), 603-615.
[36]
Karria, R.R.; Tanzifib, M.; Yarakic, M.T.; Sahu, J.N. Optimization and modeling of methyl orange adsorption onto polyaniline nano-adsorbent through response surface methodology and differential evolution embedded neural network. J. Environ. Manage., 2018, 223, 517-529.
[37]
Rahimi, S.; Moattari, M.R.; Rajabi, L.; Derakhshan, A.A. Optimization of lead removal from aqueous solution using goethite/chitosan nanocomposite by response surface methodology. Colloids Surf. A Physicochem. Eng. Aspects., 2015, 484, 216-225.
[38]
Li, B.; Gan, L.; Owens, G.; Chen, Z. New nano-biomaterials for the removal of malachite green from aqueous solution via a response surface methodology. Water Res., 2018, 146, 55-66.
[39]
Sharahi, F.J.; Shahbazi, A. Melamine-based dendrimer amine-modified magnetic nanoparticles as an efficient Pb (II) adsorbent for wastewater treatment: Adsorption optimization by response surface methodology. Chemosphere, 2017, 189, 291-300.
[40]
Lin, J.; Su, B.; Sun, M.; Chen, B.; Chen, Z. Biosynthesized iron oxide nanoparticles used for optimized removal of cadmium with response surface methodology. Sci. Total Environ., 2018, 627, 314-321.
[41]
Prabu, D.; Parthibanb, R.; Narendrakumar, G. Application of response surface methodology for removal of congo red dye by nano zerovalent iron impregnated cashew nut shell. J. Chem. Pharmaceut Res., 2015, 7(3), 879-884.
[42]
Srivastava, V.; Sharma, Y.C.; Sillanpa, M. Response surface methodological approach for the optimization of adsorption process in the removal of Cr (VI) ions by Cu2 (OH)2CO3 nanoparticles. Appl. Surface Sci., 2015, 326, 257-270.
[43]
Muzaffar, S.; Tahir, H. Enhanced synthesis of silver nanoparticles by combination of plants extract and starch for the removal of cationic dye from simulated waste water using response surface methodology. J. Mol. Liquids., 2018, 252, 368-382.
[44]
Nasiri, R.; Arsalani, N. Synthesis and application of 3D graphene nanocomposite for the removal of cationic dyes from aqueous solutions: Response surface methodology design. J. Clean. Prod., 2018, 190, 63-71.
[45]
Sahu, U.K.; Mahapatra, S.S.; Patel, R.K. Application of Box-Behnken Design in response surface methodology for adsorptive removal of arsenic from aqueous solution using CeO2/Fe2O3/ graphene nanocomposite. Mater. Chem. Phys., 2018, 207, 233-242.
[46]
Gupta, V.K.; Agarwal, S.; Asif, M.; Fakhri, A.; Sadeghi, N. Application of response surface methodology to optimize the adsorption performance of a magnetic graphene oxide nanocomposite adsorbent for removal of methadone from the environment. J. Colloid Interface Sci., 2017, 497, 193-200.
[47]
Askaria, N.; Farhadiana, M.; Razmjoub, A. Simultaneous effects of pH, concentration, pressure on dye removal by a polyamide nanofilter membrane; optimization through response surface methodology. Environ. Nanotechnol. Monitor. Manage, 2018, 10, 223-230.
[48]
Adlnasab, L.; Shabanian, M.; Ezoddin, M.; Maghsodi, A. Amine rich functionalized mesoporous silica for the effective removal of alizarin yellow and phenol red dyes from waste waters based on response surface methodology. Mater. Sci. Eng. B, 2017, 226, 188-198.
[49]
Kaynar, Ü.H.; Şabikoğlu, S.Ç. Kaynar, M. Eral, I. Modeling of thorium (IV) ions adsorption onto a novel adsorbent material silicon dioxide nano-balls using response surface methodology. Appl. Radiat. Isotopes., 2016, 115, 280-288.