Generic placeholder image

Current Pharmaceutical Analysis

Editor-in-Chief

ISSN (Print): 1573-4129
ISSN (Online): 1875-676X

Research Article

Ultrasound Assisted Dispersive Solid Phase Microextraction of Thymol and Carvacrol in Pharmaceutical Products Using Graphene Oxide as an Adsorbent Prior to Analysis by High Performance Liquid Chromatography

Author(s): Parvin Abedi Ghobadloo, Samin Hamidi*, Mahboob Nemati and Fatemeh Soghra Jahed

Volume 16, Issue 5, 2020

Page: [578 - 584] Pages: 7

DOI: 10.2174/1573412915666190220102628

Price: $65

Abstract

Background: Thymol and carvacrol are the most important dietary constituents in thyme species. These two active compounds are used for the standardization of pharmaceutical compounds.

Objective: In this work, a simple and reliable ultrasonic assisted dispersive solid phase microextraction method (USA-DSPME) coupled with high performance liquid chromatography-ultra violet detection system was developed to determine thymol and carvacrol in pharmaceutical syrups. The efficiency of SPME sorbent was examined through several sorbents and finally Graphene Oxide (GO) was applied for extraction of the analytes. Method: The efficiency of GO was compared with three reduced forms of GO adsorbents as well. Several effective factors on the extraction performance were investigated.

Results: Under the optimized conditions for the GO sorbent, inter and intra-day relative standard deviations (RSDs, n = 3) and the Limits of Detections (LODs) were lower than 5.0% and 0.02 μg/ml, respectively. Moreover, good linear ranges were observed in wide concentration ranges with R-squared larger than 0.9961 for both thymol and carvacrol.

Conclusion: The present method is reliable and simple for determination of carvacrol and thymol in pharmaceutical products.

Keywords: Ultrasound-assisted dispersive solid phase microextraction, pharmaceutical syrups, thyme, thymol, carvacrol, graphene oxide.

Graphical Abstract

[1]
Du, W.X.; Olsen, C.W.; Avena-Bustillos, R.J.; McHugh, T.H.; Levin, C.E.; Friedman, M. Storage stability and antibacterial activity against Escherichia coli O157:H7 of carvacrol in edible apple films made by two different casting methods. J. Agric. Food Chem., 2008, 56(9), 3082-3088.
[http://dx.doi.org/10.1021/jf703629s] [PMID: 18366181]
[2]
Kiyanpour, V.; Fakhari, A.R.; Alizadeh, R.; Asghari, B.; Jalali-Heravi, M. Multivariate optimization of hydrodistillation-headspace solvent microextraction of thymol and carvacrol from Thymus transcaspicus. Talanta, 2009, 79(3), 695-699.
[http://dx.doi.org/10.1016/j.talanta.2009.04.068] [PMID: 19576432]
[3]
Bagamboula, C.; Uyttendaele, M.; Debevere, J. Inhibitory effect of thyme and basil essential oils, carvacrol, thymol, estragol, linalool and p-cymene towards Shigella sonnei and S. flexneri. Food Microbiol., 2004, 21(1), 33-42.
[http://dx.doi.org/10.1016/S0740-0020(03)00046-7]
[4]
Rivas, L.; McDonnell, M.J.; Burgess, C.M.; O’Brien, M.; Navarro-Villa, A.; Fanning, S.; Duffy, G. Inhibition of verocytotoxigenic Escherichia coli in model broth and rumen systems by carvacrol and thymol. Int. J. Food Microbiol., 2010, 139(1-2), 70-78.
[http://dx.doi.org/10.1016/j.ijfoodmicro.2010.01.029] [PMID: 20153068]
[5]
Ultee, A.; Smid, E.J. Influence of carvacrol on growth and toxin production by Bacillus cereus. Int. J. Food Microbiol., 2001, 64(3), 373-378.
[http://dx.doi.org/10.1016/S0168-1605(00)00480-3] [PMID: 11294360]
[6]
Hajimehdipoor, H.; Shekarchi, M.; Khanavi, M.; Adib, N.; Amri, M. A validated high performance liquid chromatography method for the analysis of thymol and carvacrol in Thymus vulgaris L. volatile oil. Pharmacogn. Mag., 2010, 6(23), 154-158.
[http://dx.doi.org/10.4103/0973-1296.66927] [PMID: 20931071]
[7]
Roosta, M.; Ghaedi, M.; Daneshfar, A.; Sahraei, R. Ultrasound assisted microextraction-nano material solid phase dispersion for extraction and determination of thymol and carvacrol in pharmaceutical samples: experimental design methodology. J. Chromatogr. B Analyt. Technol. Biomed. Life Sci., 2015, 975, 34-39.
[http://dx.doi.org/10.1016/j.jchromb.2014.10.035] [PMID: 25484348]
[8]
Nozal, M.J.; Bernal, J.L.; Jiménez, J.J.; González, M.J.; Higes, M. Extraction of thymol, eucalyptol, menthol, and camphor residues from honey and beeswax. Determination by gas chromatography with flame ionization detection. J. Chromatogr. A, 2002, 954(1-2), 207-215.
[http://dx.doi.org/10.1016/S0021-9673(02)00153-X] [PMID: 12058905]
[9]
Kohlert, C.; Abel, G.; Schmid, E.; Veit, M. Determination of thymol in human plasma by automated headspace solid-phase microextraction-gas chromatographic analysis. J. Chromatogr. B Analyt. Technol. Biomed. Life Sci., 2002, 767(1), 11-18.
[http://dx.doi.org/10.1016/S0378-4347(01)00518-7] [PMID: 11863281]
[10]
Bazylko, A.; Strzelecka, H. Quantitative determination of phenol derivatives fromOleum thymi. Chromatographia, 2000, 52(1-2), 112-114.
[http://dx.doi.org/10.1007/BF02490803]
[11]
Lodesani, M. Residue determination for some products used against Varroa infestation in bees. Apidologie (Celle), 1992, 23(3), 257-272.
[http://dx.doi.org/10.1051/apido:19920309]
[12]
Abu-Lafi, S.; Odeh, I.; Dewik, H.; Qabajah, M.; Hanus, L.O.; Dembitsky, V.M. Thymol and carvacrol production from leaves of wild Palestinian Majorana syriaca. Bioresour. Technol., 2008, 99(9), 3914-3918.
[http://dx.doi.org/10.1016/j.biortech.2007.07.042] [PMID: 17826989]
[13]
Viñas, P.; Soler-Romera, M.J.; Hernández-Córdoba, M. Liquid chromatographic determination of phenol, thymol and carvacrol in honey using fluorimetric detection. Talanta, 2006, 69(5), 1063-1067.
[http://dx.doi.org/10.1016/j.talanta.2005.12.030] [PMID: 18970682]
[14]
Herrero-Hernández, E.; Carabias-Martínez, R.; Rodríguez-Gonzalo, E. Use of a bisphenol-A imprinted polymer as a selective sorbent for the determination of phenols and phenoxyacids in honey by liquid chromatography with diode array and tandem mass spectrometric detection. Anal. Chim. Acta, 2009, 650(2), 195-201.
[http://dx.doi.org/10.1016/j.aca.2009.07.043] [PMID: 19720192]
[15]
Vas, G.; Vékey, K. Solid-phase microextraction: a powerful sample preparation tool prior to mass spectrometric analysis. J. Mass Spectrom., 2004, 39(3), 233-254.
[http://dx.doi.org/10.1002/jms.606] [PMID: 15039931]
[16]
Hamidi, S.; Jouyban, A. Capillary electrophoresis with UV detection, on-line stacking and off-line dispersive liquid-liquid microextraction for determination of verapamil enantiomers in plasma. Anal. Methods, 2015, 7(14), 5820-5829.
[http://dx.doi.org/10.1039/C5AY00916B]
[17]
Jouyban, A.; Hamidi, S. Dispersive micro-solid-phase extraction using carbon-based adsorbents for the sensitive determination of verapamil in plasma samples coupled with capillary electrophoresis. J. Sep. Sci., 2017, 40(16), 3318-3326.
[http://dx.doi.org/10.1002/jssc.201700385] [PMID: 28631422]
[18]
Hamidi, S.; Jouyban, A. Pre-concentration approaches combined with capillary electrophoresis in bioanalysis of chiral cardiovascular drugs. Pharm. Sci., 2015, 21(2), 229-243.
[http://dx.doi.org/10.15171/PS.2015.42]
[19]
Anastassiades, M.; Lehotay, S.J.; Stajnbaher, D.; Schenck, F.J. Fast and easy multiresidue method employing acetonitrile extraction/partitioning and “dispersive solid-phase extraction” for the determination of pesticide residues in produce. J. AOAC Int., 2003, 86(2), 412-431.
[http://dx.doi.org/10.1093/jaoac/86.2.412] [PMID: 12723926]
[20]
Fontana, A.R.; Camargo, A.; Martinez, L.D.; Altamirano, J.C. Dispersive solid-phase extraction as a simplified clean-up technique for biological sample extracts. Determination of polybrominated diphenyl ethers by gas chromatography-tandem mass spectrometry. J. Chromatogr. A, 2011, 1218(18), 2490-2496.
[http://dx.doi.org/10.1016/j.chroma.2011.02.058] [PMID: 21440255]
[21]
Raccichini, R.; Varzi, A.; Passerini, S.; Scrosati, B. The role of graphene for electrochemical energy storage. Nat. Mater., 2015, 14(3), 271-279.
[http://dx.doi.org/10.1038/nmat4170] [PMID: 25532074]
[22]
Hummers, W.S., Jr; Offeman, R.E. Preparation of graphitic oxide. J. Am. Chem. Soc., 1958, 80(6), 1339-1339.
[http://dx.doi.org/10.1021/ja01539a017]
[23]
Chen, J. An improved Hummers method for eco-friendly synthesis of graphene oxide. Carbon, 2013, 64, 225-229.
[http://dx.doi.org/10.1016/j.carbon.2013.07.055]
[24]
Zeng, S. Enrichment of polychlorinated biphenyl 28 from aqueous solutions using Fe3O4 grafted graphene oxide. Chem. Eng. J., 2013, 218, 108-115.
[http://dx.doi.org/10.1016/j.cej.2012.12.030]
[25]
Dong, Z. Bio-inspired surface-functionalization of graphene oxide for the adsorption of organic dyes and heavy metal ions with a super high capacity. J. Mater. Chem. A Mater. Energy Sustain., 2014, 2(14), 5034-5040.
[http://dx.doi.org/10.1039/C3TA14751G]
[26]
Xu, Y.; Sheng, K.; Li, C.; Shi, G. Self-assembled graphene hydrogel via a one-step hydrothermal process. ACS Nano, 2010, 4(7), 4324-4330.
[http://dx.doi.org/10.1021/nn101187z] [PMID: 20590149]
[27]
Ghaedi, M.; Roosta, M.; Khodadoust, S.; Daneshfar, A. Application of optimized vortex-assisted surfactant-enhanced dllme for preconcentration of thymol and carvacrol, and their determination by HPLC-UV: response surface methodology. J. Chromatogr. Sci., 2015, 53(7), 1222-1231.
[http://dx.doi.org/10.1093/chromsci/bmu216] [PMID: 25637132]
[28]
Sereshti, H.; Izadmanesh, Y.; Samadi, S. Optimized ultrasonic assisted extraction-dispersive liquid-liquid microextraction coupled with gas chromatography for determination of essential oil of Oliveria decumbens Vent. J. Chromatogr. A, 2011, 1218(29), 4593-4598.
[http://dx.doi.org/10.1016/j.chroma.2011.05.037] [PMID: 21679955]

© 2024 Bentham Science Publishers | Privacy Policy