[1]
Bosshard, C.; Bösch, M.; Liakatas, I.; Jäger, M.; Günter,
P. Ed. 1, Springer-Verlag Berlin Heidelberg:
Günter, P.; (Ed.).Nonlinear optical effects and materials.
Springer, Berlin,; , 2000, Vol. 72, pp. pp. 1-540.
[2]
Luc, J.; Migalska-Zalas, A.; Tkaczyk, S.; Andriès, J.; Fillaut, J.L.; Meghea, A.; Sahraoui, B. Study of surface relief gratings on azo organometallic films in picosecond regime. J. Opt. Electro. Adv. Mater., 2008, 10, 29-43.
[3]
Wang, X.Q.; Xu, D.; Yuan, D.R.; Tian, Y.P.; Yu, W.T.; Sun, S.Y.; Yang, Z.H.; Fang, Q.; Lu, M.K.; Yan, Y.X.; Meng, F.Q.; Guo, S.Y.; Zhang, G.H.; Jiang, M.H. Mater. Res. Bull., 1999, 34, 2003.
[4]
Fuchs, B.A. Chai syn, K.; Stephan Velsko, P. Diamond turning of L-arginine phosphate, a new organic nonlinear crystal. Appl. Opt., 1989, 28(20), 4465-4472.
[5]
Fichou, D.; Watanabe, T.; Takeda, T.; Miyata, S.; Goto, Y.; Nakayama, M. Influence of the ring-substitution on the second harmonic generation of chalcone derivatives. Jpn. J. Appl. Phys., 1988, 27, L429-L430.
[6]
Uchida, T.; Kozawa, K.; Sakai, T.; Aoki, M.; Yoguchi, H.I.; Atdureyim, A.; Watanabe, Y. Novel organic SHG materials. Mol. Cryst. Liq. Cryst., 1988, 315(1), 135-140.
[7]
Sension, R.J.; Hudson, B.; Callis, P.R. Resonance Raman studies of guanidinium and substituted guanidinium ions. The J. Phys. Chem., 1990, 94(10), 4015-4025.
[8]
Junaid, B.M.; Antony, C.J.; Fleck, M. Vibrational spectroscopic studies of guanidinium metal (MII) sulphate hexahydrates. [MII= Co, Fe, Ni]. Solid State Commun., 2007, 143, 348-352.
[9]
Drozd, M. The equilibrium structures, vibrational spectra, NLO and directional properties of transition dipole moments of diguanidinium arsenate monohydrate and diguanidinium phosphate monohydrate. The theoretical DFT calculations. Spectrochim. Acta A Mol. Biomol. Spectrosc., 2006, 65(5), 1069-1086.
[10]
Binoy, J.; James, C.; Hubert Joe, I.; Jayakumar, V.S. Vibrational analysis and Y-aromaticity in bis (N,N′-diphenyl guanidinium) oxalate crystal: A DFT study. J. Mol. Struct., 2006, 784(1-3), 32-46.
[11]
Drozd, M. The theoretical calculations of vibrational spectra of guanidine selenate and guanidinium sulphate. Determination of direction of transition dipole moments by two methods: oriented gas model and changes in displacement eigenvectors computed by DFT method. J. Mol. Struct. (Thoechem), 2005, 756(1-3), 173-184.
[12]
Nadia, E.A.; El-Gamel, J.W.; Kroke, E. Guanidinium cyanurates versus guanidinium cyamelurates: synthesis, spectroscopic investigation and structural characterization. J. Mol. Struct., 2008, 888(1-3), 204-213.
[13]
Drozd, M.; Dudzic, D. The guanidine and maleic acid (1:1) complex. The additional theoretical and experimental studies. Spectrochim. Acta Part A: Mol. Biomol. Spectrosc., 2012, 89, 243-251.
[14]
Balachandran, V.; Karthick, T.; Perumal, S.; Nataraj, A. Vibrational spectroscopic studies, molecular orbital calculations and chemical reactivity of 6-nitro-m-toluic acid. Spectrochim. Acta A Mol. Biomol. Spectrosc., 2012, 92, 137-147.
[15]
Karthick, T.; Balachandran, V.; Perumal, S. Spectroscopic investigations, molecular interactions, and molecular docking studies on the potential inhibitor “thiophene-2-carboxylicacid”. Spectrochim. Acta A Mol. Biomol. Spectrosc., 2015, 141, 104-112.
[16]
Nataraj, A.; Balachandran, V.; Karthick, T. Density functional study on the structural conformations, intramolecular charge transfer and vibrational spectra of 4-hydroxy-3-methoxy-5-nitrobenzaldehyde. J. Mol. Struct., 2011, 1006(1-3), 104-112.
[17]
Nataraj, A.; Balachandran, V.; Karthick, T. FT-IR and Raman spectra, DFT and SQMFF calculations for geometrical interpretation and vibrational analysis of 3-nitro-p-toluic acid. J. Mol. Struct., 2012, 1004, 94-108.
[18]
Minaev, B.F.; Minaeva, V.A. Study of IR spectrum of the 17β-estradiol using quantum-chemical density functional theory. Biopolymers Cell, 2006, 22(5), 363-374.
[19]
Minaeva, V.A.; Minaev, B.F.; Baryshnikov, G.V.; Surovtsev, N.V.; Cherkasova, O.P.; Tkachenko, L.I.; Karaush, N.N.; Stromylo, E.V. Temperature effects in low-frequency Raman spectra of corticosteroid hormones. Opt. Spectrosc., 2015, 118(2), 214-223.
[20]
Kumar, R.; Karthick, T.; Tandon, P.; Agarwal, P.; Menezes, A.P.; Jayarama, A. Structural and vibrational characteristics of a non-linear optical material 3-(4-nitrophenyl)-1-(pyridine-3-yl) prop-2-en-1-one probed by quantum chemical computation and spectroscopic techniques. J. Mol. Struct., 2018, 1164, 180-190.
[22]
Becke, A.D. Density-functional exchange-energy approximation with correct asymptotic behavior. Phys. Rev. A, 1988, 38, 3098-3100.
[23]
Lee, C.; Yang, W.; Parr, R.G. Development of the Colle-Salvetti correlation-energy formula into a functional of the electron density. Phys. Rev. B , 1988, 37, 785-789.
[24]
Frisch, M.J.; Trucks, G.W.; Schlegel, H.B. The effects of oxidation states, spin states and solvents on molecular structure, stability and spectroscopic properties of Fe-Catechol complexes: a theoretical study. Gaussian 09, Revision B. 01; Gaussian Inc: Wallingford, CT, 2010.
[25]
Rauhut, G.; Pulay, P. Transferable scaling factors for density functional derived vibrational force fields. J. Phys. Chem., 1995, 99, 3093-3100.
[26]
Martin, J.M.L.; Van Alsenoy, C. Calculated vibrational properties of ubisemiquinones. GAR2PED; University of Antwerp, 1995.
[27]
Glendening, E.D.; Reed, A.E.; Carpenter, J.E.; Weinhold, F. Chemical computations and vibrational spectral studies of 2,3-pyrazinedicarboxylic acid. Mater. Today: Proc, 1998, 2(3), 977-981.
[28]
Dennington, R.I.; Keith, T.; Millam, J.; Eppinnett, K.; Hovell, W. Gauss view, version 5.0, 2003.
[29]
Socrates, G. Infrared and Raman Characteristic Group Frequencies.3rd Ed. Editor, Socrates, G. John Wiley & Sons, West London, UK,; , 2001.
[30]
Shanmugam, R.; Sathyanarayanan, D. Surface brightness gradients produced by the ring waves of star formation. Spectrochim. Acta A, 1984, 40, 757-764.
[31]
Powell, B.J.; Baruah, T.; Bernstein, N.; Brake, K.; McKenzie, R.H.; Meredith, P.; Pederson, M.R. A first-principles density-functional calculation of the electronic and vibrational structure of the key melanin monomers. J. Chem. Phys., 2004, 120(18), 8608-8615.
[32]
Koopmans, T.A. About the assignment of wave functions and eigenvalues to the single electrons of an atom. Physica, 1993, 1, 104-113.
[33]
Mulliken, R.S. A new electroaffinity scale; together with data on valence states and on valence ionization potentials and electron affinities. J. Chem. Phys., 1934, 2, 782-793.
[34]
Parr, R.G.; von Szentpaly, L.; Liu, S. Electrophilicity index. J. Am. Chem. Soc., 1999, 121(9), 1922-1924.
[35]
Politzer, P.; Truhlar, D.G. Chemical application of atomic and molecular electrostatic potentials; Plenum: New York, 1981.
[36]
Politzer, P.; Murray, J.S. Thermo-Calc and DICTRA, computational tools for materials science. Rev. Comput. Chem., 1991, 2, 273-312.