[1]
Granqvist, C.G.; Bayrak Pehlivan, İ.; Niklasson, G.A. Electrochromics on a roll: Web-coating and lamination for smart windows. Surf. Coat. Tech., 2018, 336, 133-138.
[2]
Wen, R.T.; Arvizu, M.A.; Niklasson, G.A.; Granqvist, C.G. Electrochromics for energy efficient buildings: Towards long-term durability and materials rejuvenation. Surf. Coat. Tech., 2016, 290, 135-139.
[3]
Granqvist, C.G. Recent progress in thermochromics and electrochromics: A brief survey. Thin Solid Films, 2016, 614, 90-96.
[4]
Granqvist, C.G.; Niklasson, G.A. Solar energy materials for thermal applications: A primer. Sol. Energy Mater. Sol. Cells, 2018, 180, 213-226.
[5]
Lee, E.S.; Di Bartolomeo, D.L. Application issues for large-area electrochromic windows in commercial buildings. Sol. Energy Mater. Sol. Cells, 2002, 71, 465-491.
[6]
Piccolo, A. Thermal performance of an electrochromic smart window tested in an environmental test cell. Energy Build., 2010, 42, 1409-1417.
[7]
Piccolo, A.; Simone, F. Performance requirements for electrochromic smart window. J. Build. Eng., 2015, 3, 94-103.
[8]
Piccolo, A.; Simone, F. Performance of an all solid state electrochromic prototype for smart window applications. Energ. Proc, 2015, 78, 110-115.
[9]
Piccolo, A.; Marino, C.; Nucara, A.; Pietrafesa, M. Energy performance of an electrochromic switchable glazing: Experimental and computational assessments. Energy Build., 2018, 165, 390-398.
[10]
Aste, N.; Leonforte, F.; Piccolo, A. Color rendering performance of smart glazings for building applications. Sol. Energy, 2018, 176, 51-61.
[11]
Piccolo, A.; Pennisi, A.; Simone, F. Daylighting performance of an electrochromic window in a small scale test-cell. Sol. Energy, 2009, 83, 832-844.
[12]
Piccolo, A.; Simone, F. Effect of switchable glazing on discomfort glare from windows. Build. Environ., 2009, 44, 1171-1180.
[13]
Sun, G.Y.; Cao, X.; Zhou, H.; Bao, S.; Jin, P. A novel multifunctional thermochromic structure with skin comfort design for smart window application. Sol. Energy Mater. Sol. Cells, 2017, 159, 553-559.
[14]
Skaff, M.C.; Gosselin, L. Summer performance of ventilated windows with absorbing or smart glazings. Sol. Energy, 2014, 105, 2-13.
[15]
Dussault, J.M.; Gosselin, L. Office buildings with electrochromic windows: A sensitivity analysis of design parameters on energy performance, and thermal and visual comfort. Energy Build., 2017, 153, 50-62.
[16]
Gosselin, L.; Dussault, J.M. Correlations for glazing properties and representation of glazing types with continuous variables for daylight and energy simulations. Sol. Energy, 2017, 141, 159-165.
[17]
Rouleau, J.; Gosselin, L.; Blanchet, P. Understanding energy consumption in high-performance social housing buildings: A case study from Canada. Energy, 2018, 145, 677-690.
[18]
Papaefthimiou, S.; Syrrakou, E.; Yianoulis, P. An alternative approach for the energy and environmental rating of advanced glazing: An electrochromic window case study. Energy Build., 2009, 41, 17-26.
[19]
Papaefthimiou, S. Chromogenic technologies: Towards the realization of smart electrochromic glazing for energy-saving applications in buildings. Adv. Build. Energy Res., 2010, 4, 77-126.
[20]
Papaefthimiou, S.; Leftheriotis, G.; Yianoulis, P.; Hyde, T.; Eames, P.C.; Fang, Y.; Pennarun, P.Y.; Jannasch, P. Development of electrochromic evacuated advanced glazing. Energy Build., 2006, 38, 1455-1467.
[21]
Syrrakou, E.; Papaefthimiou, S.; Yianoulis, P. Environmental assessment of electrochromic glazing production. Sol. Energy Mater. Sol. Cells, 2005, 85, 205-240.
[22]
Papaefthimiou, S.; Syrrakou, E.; Yianoulis, P. Energy performance assessment of an electrochromic window. Thin Solid Films, 2006, 502, 257-264.
[23]
Tavares, P.; Bernardo, H.; Gaspar, A.; Martins, A. Control criteria of electrochromic glasses for energy savings in mediterranean buildings refurbishment. Sol. Energy, 2016, 134, 236-250.
[24]
Tavares, P.F.; Gaspar, A.R.; Martins, A.G.; Frontini, F. Eco-efficient Materials for Mitigating Building Cooling Needs: Design, Properties and Applications; Elsevier Ltd, 2015, pp. 499-524.
[25]
Tavares, P.F.; Gaspar, A.R.; Martins, A.G.; Frontini, F. Evaluation of electrochromic windows impact in the energy performance of buildings in mediterranean climates. Energy Policy, 2014, 67, 68-81.
[26]
De Forest, N.; Shehabi, A.; O’Donnell, J.; Garcia, G.; Greenblatt, J.; Lee, E.S.; Selkowitz, S.; Milliron, D.J. United States energy and CO2 savings potential from deployment of near-infrared electrochromic window glazings. Build. Environ., 2015, 89, 107-117.
[27]
De Forest, N.; Shehabi, A.; Selkowitz, S.; Milliron, D.J. A comparative energy analysis of three electrochromic glazing technologies in commercial and residential buildings. Appl. Energy, 2017, 192, 95-109.
[28]
De Forest, N.; Shehabi, A.; Garcia, G.; Greenblatt, J.; Masanet, E.; Lee, E.S.; Selkowitz, S.; Milliron, D.J. Regional performance targets for transparent near-infrared switching electrochromic window glazings. Build. Environ., 2013, 61, 160-168.
[29]
Lee, E.S.; Tavil, A. Energy and visual comfort performance of electrochromic windows with overhangs. Build. Environ., 2007, 42, 2439-2449.
[30]
Tavil, E.S. Lee, Effects of overhangs on the performance of electrochromic windows. Archit. Sci. Rev., 2006, 49, 349-356.
[31]
Fernandes, L.L.; Lee, E.S.; Ward, G. Lighting energy savings potential of split-pane electrochromic windows controlled for daylighting with visual comfort. Energy Build., 2013, 61, 8-20.
[32]
Aldawoud, A. Conventional fixed shading devices in comparison to an electrochromic glazing system in hot, dry climate. Energy Build., 2013, 59, 104-110.
[33]
Assimakopoulos, M.N.; Tsangrassoulis, A.; Santamouris, M.; Guarracino, G. Comparing the energy performance of an electrochromic window under various control strategies. Build. Environ., 2007, 42, 2829-2834.
[34]
Shen, E.; Hong, T. Simulation-based assessment of the energy savings benefits of integrated control in office buildings. Build. Simul., 2009, 2, 239-251.
[35]
Jelle, B.P. Solar radiation glazing factors for window panes, glass structures and electrochromic windows in buildings. Measurement and calculation. Sol. Energy Mater. Sol. Cells, 2013, 116, 291-323.
[36]
Baetens, R.; Jelle, B.P.; Gustavsen, A. Properties, requirements and possibilities of smart windows for dynamic daylight and solar energy control in buildings: A state-of-the-art review. Sol. Energy Mater. Sol. Cells, 2010, 94, 87-105.
[37]
Lim, S.H.N.; Isidorsson, J.; Sun, L.; Kwak, B.L.; Anders, A. Modeling of optical and energy performance of tungsten-oxide-based electrochromic windows including their intermediate states. Sol. Energy Mater. Sol. Cells, 2013, 108, 129-135.
[38]
Long, L.; Ye, H. How to be smart and energy efficient: A general discussion on thermochromic windows. Sci. Rep., 2014, 4, 6427.
[39]
Kamalisarvestani, M.; Saidur, R.; Mekhilef, S.; Javadi, F.S. Performance, materials and coating technologies of thermochromic thin films on smart windows. Renew. Sustain. Energy Rev., 2013, 26, 353-364.
[40]
Baetens, R.; Jelle, B.P.; Gustavsen, A. Phase change materials for building applications: A state-of-the-art review. Energy Build., 2010, 42, 1361-1368.
[41]
Baetens, R.; Jelle, B.P.; Gustavsen, A. Properties, requirements and possibilities of smart windows for dynamic daylight and solar energy control in buildings: A state-of-the-art review. Sol. Energy Mater. Sol. Cells, 2010, 94, 87-105.
[42]
Livage, J.; Ganguli, D. Sol-gel electrochromic coatings and devices: A review. Sol. Energy Mater. Sol. Cells, 2001, 68, 365-381.
[43]
Lampert, C.M. Smart switchable glazing for solar energy and daylight control. Sol. Energy Mater. Sol. Cells, 1998, 52, 207-221.
[44]
Lampert, M. Chromogenic smart materials. Mater. Today, 2004, 7, 28-35.
[45]
Granqvist, C.G. Electrochromics for smart windows: Oxide-based thin films and devices. Thin Solid Films, 2014, 564, 1-38.
[46]
Granqvist, C.G.; Green, S.; Niklasson, G.A.; Mlyuka, N.R.; Von Kraemer, S.; Georén, P. Advances in chromogenic materials and devices. Thin Solid Films, 2010, 518, 3046-3053.
[47]
Granqvist, G. Electrochromic Materials and Devices; Wiley Blackwell, 2015, pp. 1-40.
[48]
Shehabi, A.; De Forest, N.; Mc Neil, A.; Masanet, E.; Greenblatt, J.; Lee, E.S.; Masson, G.; Helms, B.A.; Milliron, D.J.U.S. energy savings potential from dynamic daylighting control glazings. Energy Build., 2013, 66, 415-423.
[49]
Baldassarri, C.; Shehabi, A.; Asdrubali, F.; Masanet, E. Energy and emissions analysis of next generation electrochromic devices. Sol. Energy Mater. Sol. Cells, 2016, 156, 170-181.
[50]
Yaman, K.; Arslan, G. Modeling, simulation, and optimization of a solar water heating system in different climate regions. J. Renew. Sustain. Energy, 2018, 10(2)023703
[51]
Lee, J.W.; Jung, H.J.; Park, J.Y.; Lee, J.B.; Yoon, Y. Optimization of building window system in Asian regions by analyzing solar heat gain and daylighting elements. Renew. Energy, 2013, 50, 522-531.
[52]
Chan, L.S.; Chow, T.T. Thermal performance of air-conditioned office buildings constructed with inclined walls in different climates in China. Appl. Energy, 2014, 114, 45-57.
[53]
Pereira Tavares, M.C.; Perdigão Gonçalves, H.J.; De Faria Corrêa Bastos, J.N.T. The glazing area in residential buildings in temperate climate: The thermal-energetic performance of housing units in Lisbon. Energy Build., 2017, 140, 280-294.
[54]
Wei, J.; Zhao, J.; Chen, Q. Energy performance of a dual airflow window under different climates. Energy Build., 2010, 42, 111-122.
[55]
Lai, K.; Wang, W.; Giles, H. Solar shading performance of window with constant and dynamic shading function in different climate zones. Sol. Energy, 2017, 147, 113-125.
[56]
Aste, N.; Buzzetti, M.; Del Pero, C.; Leonforte, F. Glazing’s techno-economic performance: A comparison of window features in office buildings in different climates. Energy Build., 2018, 159, 123-135.
[57]
Hoseinzadeh, S.; Azadi, R. Simulation and optimization of a solar-assisted heating and cooling system for a house in Northern of Iran. J. Renew. Sustain. Energy, 2017, 9(4)045101
[58]
Yousef Nezhad, M.E.; Hoseinzadeh, S. Mathematical modelling and simulation of a solar water heater for an aviculture unit using MATLAB/SIMULINK. J. Renew. Sustain. Energy, 2017, 9(6)063702
[59]
Wang, Q.; Zhang, Y.; Wang, Y.; Sun, J.; He, L. Dynamic three-dimensional stress prediction of window glass under thermal loading. Int. J. Therm. Sci., 2012, 59, 152-160.
[60]
Wang, Q.; Chen, H.; Wang, Y.; Wen, J.X.; Dembele, S.; Sun, J.; He, L. Development of a dynamic model for crack propagation in glazing system under thermal loading. Fire Saf. J., 2014, 63, 113-124.
[61]
Silva, T.; Vicente, R.; Rodrigues, F.; Samagaio, A.; Cardoso, C. Performance of a window shutter with phase change material under summer Mediterranean climate conditions. Appl. Therm. Eng., 2015, 84, 246-256.
[62]
Lee, E.; Pang, X.; Mc Neil, A.; Hoffmann, S.; Thanachareonkit, A.; Li, Z.; Ding, Y. Assessment of the potential to achieve very low energy use in public buildings in China with advanced window and shading systems. Buildings, 2015, 5, 668-699.
[63]
Hoseinzadeh, S.; Ghasemiasl, R.; Havaei, D.; Chamkha, A.J. Numerical investigation of rectangular thermal energy storage units with multiple phase change materials. J. Mol. Liq., 2018, 271, 655-660.
[64]
Ghasemiasl, R.; Hoseinzadeh, S.; Javadi, M.A. Numerical analysis of energy storage systems using two phase-change materials with nanoparticles. J. Thermophys. Heat Transfer, 2018, 32, 440-448.
[65]
Hoseinzadeh, S.; Ghasemiasl, R.; Bahari, A.; Ramezani, A.H. Effect of post-annealing on the electrochromic properties of layer-by-layer arrangement FTO-WO3-Ag-WO3-Ag. J. Electron. Mater., 2018, 47, 3552-3559.
[66]
Hoseinzadeh, S.; Ghasemiasl, R.; Bahari, A.; Ramezani, A.H. n-Type WO3 semiconductor as a cathode electrochromic material for ECD devices. J. Mater. Sci. Mater. Electron., 2017, 28, 14446-14452.
[67]
Hoseinzadeh, S.; Ghasemiasl, R.; Bahari, A.; Ramezani, A.H. The injection of Ag nanoparticles on surface of WO3 thin film: Enhanced electrochromic coloration efficiency and switching response. J. Mater. Sci. Mater. Electron., 2017, 28, 14855-14863.
[68]
Najafi-Ashtiani, H.; Bahari, A.; Gholipour, S.; Hoseinzadeh, S. Structural, optical and electrical properties of WO3–Ag nanocomposites for the electro-optical devices. Appl. Phys., A Mater. Sci. Process., 2018, 124(1), 24.
[69]
Hoseinzadeh, S.; Sahebi, S.A.R.; Ghasemiasl, R.; Majidian, A.R. Experimental analysis to improving thermosyphon (TPCT) thermal efficiency using nanoparticles/based fluids (water). Eur. Phys. J. Plus, 2017, 132(5), 197.
[70]
Yari, A.; Hosseinzadeh, S.; Golneshan, A.A.; Ghasemiasl, R. Numerical
simulation for thermal design of a gas water heater with
turbulent combined convection. In: ASME/JSME/KSME Joint Fluids
Engineering Conference, AJK Fluids. 2015, 1, VOIAT03A006-
VOIAT03A006.
[71]
Ramezani, A.H.; Hoseinzadeh, S.; Bahari, A. The effects of nitrogen on structure, morphology and electrical resistance of tantalum by ion implantation method. J. Inorg. Organomet. Polym. Mater., 2018, 28, 847-853.
[72]
Hoseinzadeh, S.; Ramezani, A.H. Corrosion performance of Ta/Ni ions implanted with WO3/FTO. J. Chin. Soc. Mech. Eng., 2018, 39(5), 501-507.
[73]
Hoseinzadeh, S.; Hadi Zakeri, M.; Shirkhani, A.; Chamkha, A.J. Analysis of energy consumption improvements of a zero-energy building in a humid mountainous area. J. Renew. Sustain. Energy, 2019, 11015103