[1]
S. Zelikovitz, W.W. Cohen, and H. Hirsh, "Extending WHIRL with background knowledge for improved text classification", Inf. Retrieval, vol. 10, no. 1, pp. 35-67, 2007.
[3]
J.A.K. Suykens, and J. Vandewalle, "Least squares support vector machine classifiers", Neural Process. Lett., vol. 9, no. 3, pp. 293-300, 1999.
[4]
S. Gong, S.J. McKenna, and A. Psarrou, From images to face recognition.Image Processing, Imperial College Press, 1999
[5]
C. Cortes, and V. Vapnik, "Support-vector networks", Mach. Learn., vol. 20, no. 3, pp. 273-297, 1995.
[6]
S.V. Sheela, and P.A. Vijaya, "Non-linear classification for iris patterns", In: Multimedia Computing and Systems (ICMCS), 2011 International Conference on, 2011, pp. 1-5.
[7]
"J. S.-Taylor and N. Cristianini", Kernel methods for pattern analysis.Cambridge University Press, . 2004
[8]
B. Koo, S. La, N.W. Cho, and Y. Yu, "Using support vector machines to classify building elements for checking the semantic integrity of building information models", Autom. Construct., vol. 98, pp. 183-194, 2019.
[9]
M. Pontil, and A. Verri, "Support vector machines for 3D object recognition", IEEE Trans. Pattern Anal. Mach. Intell., vol. 20, no. 6, pp. 637-646, 1998.
[10]
C. Cortes, and V. Vapnik, "Support-vector networks", Mach. Learn., vol. 20, pp. 3273-3297, 1995.
[11]
H. Drucker, C.J. Burges, L. Kaufman, A.J. Smola, and V. Vapnik, Support vector regression machines., Adv. Neur. Inform. Process Syst, 1997, pp. 155-161.
[12]
C.J. Burges, "A tutorial on support vector machines for pattern recognition", Data Min. Knowl. Discov., vol. 2, no. 2, pp. 121-167, 1998.
[13]
W. Chu, and S.S. Keerthi, "New approaches to support vector ordinal regression", In: Proceedings of the 22nd International Conference on Machine learning. Bonn, Germany, 2005, pp. 145-152.
[14]
A. Mohan, C. Papageorgiou, and T. Poggio, "Example-based object detection in images by components", IEEE Trans. Pattern Anal. Mach. Intell., vol. 1, no. 4, pp. 349-361, 2001.
[15]
M. Deypir, M.H. Sadreddini, and S. Hashemi, "Towards a variable size sliding window model for frequent item set mining over data streams", Comput. Ind. Eng., vol. 63, no. 1, pp. 161-172, 2012.
[16]
C.H. Lin, D.Y. Chiu, Y.H. Wu, and A.L. Chen, "Mining frequent item sets from data streams with a time-sensitive sliding window", In: Proceedings of the 2005 SIAM International Conference on Data Mining, 2005, pp. 68-79.
[17]
C. Schuldt, I. Laptev, and B. Caputo, "Recognizing human actions: A local SVM approach", In: Proceedings of the 17th International Conference on Pattern Recognition.2004. ICPR 2004. Cambridge, UK,, 2004, Vol. 3, pp. 32-36.
[18]
"Z. Lin, M. Chen and Y. Ma, “The augmented Lagrange multiplier method for exact recovery of corrupted low-rank matrices”, arXiv preprint arXiv:", 1009.5055. 2010.
[19]
H. Everett III, "Generalized Lagrange multiplier method for solving problems of optimum allocation of resources", Oper. Res., vol. 11, no. 3, pp. 399-417, 1963.
[20]
T. Joachims, "Text categorization with support vector machines: Learning with many relevant features. In: European Conference On Machine Learning", Springer, Berlin, Heidelberg, 1998, pp. 137-142.
[21]
R.O. Duda, P.E. Hart, and D.G. Stork, Pattern classification.Edition Wiley interscience. New York., 2001
[22]
E. Bron, M. Smits, J. van Swieten, W. Niessen, and S. Klein, "Feature selection based on SVM significance maps for classification of dementia", In: International Workshop on Machine Learning in Medical Imaging. SpringerLink, 2014, pp. 272-279
[23]
C. Giannella, J. Hany, J. Peiz, X. Yany, and P.S. Yu, "Mining frequent patterns in data streams at multiple time granularities", Next Gen. Data Min., vol. 212, pp. 191-212, 2003.
[24]
N. Jiang, and L. Gruenwald, "Research issues in data stream association rule mining", ACM Sigmod Record., vol. 35, no. 1, pp. 14-19, 2006.
[25]
P.S. Tsai, "Mining frequent item sets in data streams using the weighted sliding window model", Expert Syst. Appl., vol. 36, no. 9, pp. 11617-11625, 2009.
[26]
Y.D. Cai, D. Clutter, G. Pape, J. Han, M. Welge, and L. Auvil, "MAIDS: Mining alarming incidents from data streams", In: Proceedings of the 2004 ACM SIGMOD International Conference on Management of Data. Paris, France, 2004, pp. 919-920.
[27]
(a)N.Y. Yen, T.K. Shih, L.R. Chao, and Q. Jin, "Ranking metrics and search guidance for learning object repository", IEEE Trans. Learn. Technol., vol. 3, no. 3, pp. 250-264, 2010.(b)X. Peipei, L. Zhang, and L. Fanzhang, "Learning similarity with cosine similarity ensemble", Inf. Sci., vol. 307, pp. 39-52, 2015.
[28]
P. Xia, L. Zhang, and F. Li, "Learning similarity with cosine similarity ensemble", Inf. Sci., vol. 307, pp. 39-52, 2015.
[29]
T. Xiaoling, W. Yong, W. Yi, and L. Ye, Network traffic classification based on multi-classifier selective ensemble.Rec. Adv. Elec. Electron. Eng., Vol. 8, no. 2, 2015.
[30]
D. Hardin, I. Tsamardinos, and C.F. Aliferis, "A theoretical characterization of linear SVM-based feature selection", In: Proceedings of the twenty-first international conference on Machine learning.Banff, Alberta, Canada, 2004
[31]
S.R. Gunn, "Support vector machines for classification and regression", ISIS Technical Report, vol. 14, no. 1, pp. 5-16, 1998.
[32]
M. Bala, and R.K. Agrawal, Optimal decision tree based multi-class support vector machine.Informatica,Vol. 35, no. 2, , 2011
[33]
C-W. Hsu, C-C. Chang, and C-J. Lin, A practical guide to support vector classification., pp. 1-16. 2003
[34]
"NCBI PubMed dataset,", http://www.ncbi.nlm.nih.gov/pubmed
[35]
J.H. Hayes, A. Dekhtyar, and J. Osborne, "Improving requirements tracing via information retrieval", In: Requirements Engineering Conference.2003. Proceedings. 11th IEEE International Monterey Bay, CA, USA , 2003, pp. 138-147.