Generic placeholder image

Anti-Infective Agents

Editor-in-Chief

ISSN (Print): 2211-3525
ISSN (Online): 2211-3533

Research Article

Effect of Polypropylene Imine Nanocomposite on Gram-Positive and Gram-Negative Bacteria

Author(s): Bashir Mohammadpour*, Mohammad A. Boshagh, Bagher Hayati, Leila Farhadi, Hajar Kashefi and Himen Salimizand

Volume 18, Issue 2, 2020

Page: [115 - 120] Pages: 6

DOI: 10.2174/2211352517666190215114534

Abstract

Background: Nosocomial infection is a serious threat to hospitalized patients in healthcare when last-resort antibiotics do not act against pathogenic bacteria.

Aims: The aim of this study was to study the effect of Polypropylene imine nanocomposite (PPI/CNT) on Gram-Positive and Gram-Negative bacteria.

Methods: PPI/CNT component was produced. Surface morphology and structure of PPI/CNT were analyzed by Fourier-transform infrared (FTIR), Scanning Electron Microscopy (SAM) and Transmission Electron Microscopy (TEM). Minimum Inhibitory Concentration (MIC) of PPI/CNT was determined against various bacteria.

Results: FTIR showed strong and wider peak binding molecules in the CNT/COOH and PPI/CNT component. PPI/CNT component was denser in comparison to low carbon nanotube according to SAM test. TEM images showed that carbon nanotube was covered by PPI dots. The lowest MIC concerns polymer particles for Staphylococcus epidermidis were 0.0025 μM/ml and Mycobacterium smegmatis 0.005 μM/ml.

Conclusion: Our result indicated that PPI/CNT nanocomposite had good activity against Gram-positive and Gram-negative bacteria. Some of the gram-negative bacteria were tolerant up to highest concentration. With more investigations, it can be used as a new antibacterial component.

Keywords: Polypropylene imine nanocomposite, electron microscopy, biomedical applications, PPI/CNT, Mycobacterium smegmatis, Staphylococcus epidermidis.

Graphical Abstract

[1]
Allegranzi, B.; Bagheri Nejad, S.; Combescure, C.; Graafmans, W.; Attar, H.; Donaldson, L.; Pittet, D. Burden of endemic health-care-associated infection in developing countries: systematic review and meta-analysis. Lancet, 2011, 377(9761), 228-241.
[http://dx.doi.org/10.1016/S0140-6736(10)61458-4] [PMID: 21146207]
[2]
Shlaes, D.M.; Gerding, D.N.; John, J.F., Jr; Craig, W.A.; Bornstein, D.L.; Duncan, R.A.; Eckman, M.R.; Farrer, W.E.; Greene, W.H.; Lorian, V.; Levy, S.; McGowan, J.E., Jr; Paul, S.M.; Ruskin, J.; Tenover, F.C.; Watanakunakorn, C. society for healthcare epidemiology of America and infectious diseases society of America joint committee on the prevention of antimicrobial resistance: guidelines for the prevention of antimicrobial resistance in hospitals. Infect. Control Hosp. Epidemiol., 1997, 18(4), 275-291.
[http://dx.doi.org/10.2307/30141215] [PMID: 9131374]
[3]
Singh, S.; Chaturvedi, R.; Garg, S.M.; Datta, R.; Kumar, A. Incidence of healthcare associated infection in the surgical ICU of a tertiary care hospital. Med. J. Armed Forces India, 2013, 69(2), 124-129.
[http://dx.doi.org/10.1016/j.mjafi.2012.08.028] [PMID: 24600084]
[4]
Gjerazi, E.; Gjata, A. Hospital acquired infection in a general surgery ward. Int. J. Sci. Res. (Ahmedabad), 2015, 10(4), 698-700.
[5]
Wilcox, M.H.; Hall, J.; Pike, H.; Templeton, P.A.; Fawley, W.N.; Parnell, P.; Verity, P. Use of perioperative mupirocin to prevent methicillin-resistant Staphylococcus aureus (MRSA) orthopaedic surgical site infections. J. Hosp. Infect., 2003, 54(3), 196-201.
[http://dx.doi.org/10.1016/S0195-6701(03)00147-6] [PMID: 12855234]
[6]
Falk, P.S.; Winnike, J.; Woodmansee, C.; Desai, M.; Mayhall, C.G. Outbreak of vancomycin-resistant enterococci in a burn unit. Infect. Control Hosp. Epidemiol., 2000, 21(9), 575-582.
[http://dx.doi.org/10.1086/501806] [PMID: 11001260]
[7]
Gaillot, O.; Maruéjouls, C.; Abachin, E.; Lecuru, F.; Arlet, G.; Simonet, M.; Berche, P. Nosocomial outbreak of Klebsiella pneumoniae producing SHV-5 extended-spectrum β-lactamase, originating from a contaminated ultrasonography coupling gel. J. Clin. Microbiol., 1998, 36(5), 1357-1360.
[http://dx.doi.org/10.1128/JCM.36.5.1357-1360.1998] [PMID: 9574705]
[8]
Ducel, G.; Fabry, J.; Nicolle, L. Organization world Health Prevention of hospital-acquired infections: a practical guide, 2002. February
[9]
Dellinger, E.P. Prevention of Hospital-Acquired Infections. Surg. Infect. (Larchmt.), 2016, 17(4), 422-426.
[http://dx.doi.org/10.1089/sur.2016.048] [PMID: 27248978]
[10]
Russotto, V.; Cortegiani, A.; Raineri, S.M.; Giarratano, A. Bacterial contamination of inanimate surfaces and equipment in the intensive care unit. J. Intensive Care, 2015, 3(1), 54-59.
[http://dx.doi.org/10.1186/s40560-015-0120-5] [PMID: 26693023]
[11]
Kramer, A.; Schwebke, I.; Kampf, G. How long do nosocomial pathogens persist on inanimate surfaces? A systematic review. BMC Infect. Dis., 2006, 6(1), 130-135.
[http://dx.doi.org/10.1186/1471-2334-6-130] [PMID: 16914034]
[12]
DeLeo, F.R.; Otto, M.; Kreiswirth, B.N.; Chambers, H.F. Community-associated meticillin-resistant Staphylococcus aureus. Lancet, 2010, 375(9725), 1557-1568.
[http://dx.doi.org/10.1016/S0140-6736(09)61999-1] [PMID: 20206987]
[13]
Santajit, S.; Indrawattana, N. Mechanisms of antimicrobial resistance in ESKAPE pathogens. BioMed Res. Int., 2016, 2016(10)2475067
[http://dx.doi.org/10.1155/2016/2475067] [PMID: 27274985]
[14]
Larsson, D.G. Antibiotics in the environment. Ups. J. Med. Sci., 2014, 119(2), 108-112.
[http://dx.doi.org/10.3109/03009734.2014.896438] [PMID: 24646081]
[15]
Bengtsson-Palme, J.; Kristiansson, E.; Larsson, D.G.J. Environmental factors influencing the development and spread of antibiotic resistance. FEMS Microbiol. Rev., 2018, 42(1), 68-80.
[http://dx.doi.org/10.1093/femsre/fux053] [PMID: 29069382]
[16]
Neidell, M.J.; Cohen, B.; Furuya, Y.; Hill, J.; Jeon, C.Y.; Glied, S.; Larson, E.L. Costs of healthcare- and community-associated infections with antimicrobial-resistant versus antimicrobial-susceptible organisms. Clin. Infect. Dis., 2012, 55(6), 807-815.
[http://dx.doi.org/10.1093/cid/cis552] [PMID: 22700828]
[17]
Klevens, R.M.; Edwards, J.R.; Gaynes, R.P.; System, N.N.I.S. National Nosocomial Infections Surveillance System.The impact of antimicrobial-resistant, health care-associated infections on mortality in the United States. Clin. Infect. Dis., 2008, 47(7), 927-930.
[http://dx.doi.org/10.1086/591698] [PMID: 18752440]
[18]
Abbasi, E.; Aval, S.F.; Akbarzadeh, A.; Milani, M.; Nasrabadi, H.T.; Joo, S.W.; Hanifehpour, Y.; Nejati-Koshki, K.; Pashaei-Asl, R. Dendrimers: synthesis, applications, and properties. Nanoscale Res. Lett., 2014, 9(1), 247-250.
[http://dx.doi.org/10.1186/1556-276X-9-247] [PMID: 24994950]
[19]
Ladd, E. The Design and Synthesis of Dendrimers for Applications in the Pulp & Paper Industry; McGill University: Canada, 2012.
[20]
Hermanson, G.T. Bioconjugate techniques, 3rd ed; Elsevier, Academic press, 2013.
[21]
Diallo, M.S. Water treatment by dendrimer-enhanced filtration: Principles and applications Nanotechnology Applications for Clean Water, 2nd ed; Elsevier, 2009, pp. 143-155.
[22]
Felczak, A.; Wrońska, N.; Janaszewska, A.; Klajnert, B.; Bryszewska, M.; Appelhans, D. Antimicrobial activity of poly (propylene imine) dendrimers. New J. Chem., 2012, 36(11), 2215-2222.
[http://dx.doi.org/10.1039/c2nj40421d]
[23]
Davies, J.; Davies, D. Origins and evolution of antibiotic resistance. Microbiol. Mol. Biol. Rev., 2010, 74(3), 417-433.
[http://dx.doi.org/10.1128/MMBR.00016-10] [PMID: 20805405]
[24]
Gutierrez, A.; Laureti, L.; Crussard, S.; Abida, H.; Rodríguez-Rojas, A.; Blázquez, J.; Baharoglu, Z.; Mazel, D.; Darfeuille, F.; Vogel, J.; Matic, I. β-Lactam antibiotics promote bacterial mutagenesis via an RpoS-mediated reduction in replication fidelity. Nat. Commun., 2013, 4, 1610-1614.
[http://dx.doi.org/10.1038/ncomms2607] [PMID: 23511474]
[25]
Drzewińska, J.; Appelhans, D.; Voit, B.; Bryszewska, M.; Klajnert, B. Poly(propylene imine) dendrimers modified with maltose or maltotriose protect phosphorothioate oligodeoxynucleotides against nuclease activity. Biochem. Biophys. Res. Commun., 2012, 427(1), 197-201.
[http://dx.doi.org/10.1016/j.bbrc.2012.09.043] [PMID: 22995301]
[26]
Ahn, S-k.; Kasi, R.M.; Kim, S-C.; Sharma, N.; Zhou, Y. Stimuli-responsive polymer gels. Soft Matter, 2008, 4(6), 1151-1157.
[http://dx.doi.org/10.1039/b714376a]
[27]
Wrońska, N.; Felczak, A.; Zawadzka, K.; Poszepczyńska, M.; Różalska, S.; Bryszewska, M.; Appelhans, D.; Lisowska, K. Poly (propylene imine) dendrimers and amoxicillin as dual-action antibacterial agents. Molecules, 2015, 20(10), 19330-19342.
[http://dx.doi.org/10.3390/molecules201019330] [PMID: 26512634]
[28]
Kannan, S.; Kolhe, P.; Raykova, V.; Glibatec, M.; Kannan, R.M.; Lieh-Lai, M.; Bassett, D. Dynamics of cellular entry and drug delivery by dendritic polymers into human lung epithelial carcinoma cells. J. Biomater. Sci. Polym. Ed., 2004, 15(3), 311-330.
[http://dx.doi.org/10.1163/156856204322977201] [PMID: 15147164]
[29]
Wang, B.; Navath, R.S.; Menjoge, A.R.; Balakrishnan, B.; Bellair, R.; Dai, H.; Romero, R.; Kannan, S.; Kannan, R.M. Inhibition of bacterial growth and intramniotic infection in a guinea pig model of chorioamnionitis using PAMAM dendrimers. Int. J. Pharm., 2010, 395(1-2), 298-308.
[http://dx.doi.org/10.1016/j.ijpharm.2010.05.030] [PMID: 20580797]
[30]
Klajnert, B.; Appelhans, D.; Komber, H.; Morgner, N.; Schwarz, S.; Richter, S.; Brutschy, B.; Ionov, M.; Tonkikh, A.K.; Bryszewska, M.; Voit, B. The influence of densely organized maltose shells on the biological properties of poly(propylene imine) dendrimers: new effects dependent on hydrogen bonding. Chemistry, 2008, 14(23), 7030-7041.
[http://dx.doi.org/10.1002/chem.200800342] [PMID: 18576443]
[31]
Klajnert, B.; Cangiotti, M.; Calici, S.; Majoral, J.P.; Caminade, A.M.; Cladera, J.; Bryszewska, M.; Ottaviani, M.F. EPR study of the interactions between dendrimers and peptides involved in Alzheimer’s and prion diseases. Macromol. Biosci., 2007, 7(8), 1065-1074.
[http://dx.doi.org/10.1002/mabi.200700049] [PMID: 17654761]

© 2024 Bentham Science Publishers | Privacy Policy