[1]
Watson L, Broderick C, Armon MP. Thrombolysis for acute deep vein thrombosis. Cochrane Database Syst Rev 2016; 11: CD002783.
[2]
Hui FK, Fiorella D, Masaryk TJ, Rasmussen PA, Dion JE. A history of detachable coils: 1987-2012. J Neurointerv Surg 2014; 6(2): 134-8.
[3]
Sheth RA, Feldman AS, Paul E, Thiele EA, Walker TG. Sporadic versus Tuberous Sclerosis Complex-Associated Angiomyolipomas: Predictors for Long-Term Outcomes following Transcatheter Embolization. J Vasc Interv Radiol 2016; 27(10): 1542-9.
[4]
Fahed R, Raymond J, Ducroux C, et al. Testing flow diversion in animal models: a systematic review. Neuroradiology 2016; 58(4): 375-82.
[5]
Raj JA, Stoodley M. Experimental Animal Models of Arteriovenous Malformation: A Review. Vet Sci 2015; 2(2): 97-110.
[6]
Lysgaard Poulsen J, Stubbe J, Lindholt JS. Animal Models Used to Explore Abdominal Aortic Aneurysms: A Systematic Review. Eur J Vasc Endovasc Surg 2016; 52(4): 487-99.
[7]
Dick R. Radiology now. Therapeutic angiographic embolization. Br J Radiol 1977; 50(592): 241-2.
[8]
Lubarsky M, Ray CE, Funaki B. Embolization agents-which one should be used when? Part 1: large-vessel embolization. Semin Intervent Radiol 2009; 26(4): 352-7.
[9]
Lubarsky M, Ray C, Funaki B. Embolization agents-which one should be used when? Part 2: small-vessel embolization. Semin Intervent Radiol 2010; 27(1): 99-104.
[10]
Gailloud P, Muster M, Piotin M, et al. In vitro models of intracranial arteriovenous fistulas for the evaluation of new endovascular treatment materials. AJNR Am J Neuroradiol 1999; 20(2): 291-5.
[11]
Sheth R, Balesh ER, Zhang YS, Hirsch JA, Khademhosseini A, Oklu R. Three-Dimensional Printing: An Enabling Technology for IR. J Vasc Interv Radiol 2016; 27(6): 859-65.
[12]
Zhang YS, Duchamp M, Oklu R, Ellisen LW, Langer R, Khademhosseini A. Bioprinting the Cancer Microenvironment. ACS Biomater Sci Eng 2016; 2(10): 1710-21.
[13]
Zhang YS, Yue K, Aleman J, et al. 3D Bioprinting for Tissue and Organ Fabrication. Ann Biomed Eng 2017; 45(1): 148-63.
[14]
Malda J, Visser J, Melchels FP, et al. 25th anniversary article: Engineering hydrogels for biofabrication. Adv Mater 2013; 25(36): 5011-28.
[15]
Murphy SV, Atala A. 3D bioprinting of tissues and organs. Nat Biotechnol 2014; 32(8): 773-85.
[16]
Li Y-C, Zhang YS, Akpek A, Shin SR, Khademhosseini A. 4D bioprinting: the next-generation technology for biofabrication enabled by stimuli-responsive materials. Biofabrication 2016; 9(1): 012001.
[17]
Boland T, Mironov V, Gutowska A, Roth EA, Markwald RR. Cell and organ printing 2: fusion of cell aggregates in three-dimensional gels. Anat Rec A Discov Mol Cell Evol Biol 2003; 272(2): 497-502.
[18]
Mironov V, Boland T, Trusk T, Forgacs G, Markwald RR. Organ printing: computer-aided jet-based 3D tissue engineering. Trends Biotechnol 2003; 21(4): 157-61.
[19]
Wilson WC Jr, Boland T. Cell and organ printing 1: protein and cell printers. Anat Rec A Discov Mol Cell Evol Biol 2003; 272(2): 491-6.
[20]
Xu T, Jin J, Gregory C, Hickman JJ, Boland T. Inkjet printing of viable mammalian cells. Biomaterials 2005; 26(1): 93-9.
[21]
Boland T, Xu T, Damon B, Cui X. Application of inkjet printing to tissue engineering. Biotechnol J 2006; 1(9): 910-7.
[22]
Cui X, Boland T, D’Lima DD, Lotz MK. Thermal inkjet printing in tissue engineering and regenerative medicine. Recent Pat Drug Deliv Formul 2012; 6(2): 149-55.
[23]
Kang H-W, Lee SJ, Ko IK, Kengla C, Yoo JJ, Atala A. A 3D bioprinting system to produce human-scale tissue constructs with structural integrity. Nat Biotechnol 2016; 34(3): 312-9.
[24]
Ma X, Qu X, Zhu W, et al. Deterministically patterned biomimetic human iPSC-derived hepatic model via rapid 3D bioprinting. Proc Natl Acad Sci USA 2016; 113(8): 2206-11.
[25]
Franco J, Hunger P, Launey ME, Tomsia AP, Saiz E. Direct write assembly of calcium phosphate scaffolds using a water-based hydrogel. Acta Biomater 2010; 6(1): 218-28.
[26]
Hansen CJ, Saksena R, Kolesky DB, et al. High-throughput printing via microvascular multinozzle arrays. Adv Mater 2013; 25(1): 96-102.
[27]
Khalil S, Nam J, Sun W. Multi-nozzle deposition for construction of 3D biopolymer tissue scaffolds. Rapid Prototyping J 2005; 11(1): 9-17.
[28]
Khalil S, Sun W. Biopolymer deposition for freeform fabrication of hydrogel tissue constructs. Mater Sci Eng C 2007; 27(3): 469-78.
[29]
Chang R, Nam J, Sun W. Effects of dispensing pressure and nozzle diameter on cell survival from solid freeform fabrication-based direct cell writing. Tissue Eng Part A 2008; 14(1): 41-8.
[30]
Zhao Y, Yao R, Ouyang L, et al. Three-dimensional printing of Hela cells for cervical tumor model in vitro. Biofabrication 2014; 6(3): 035001.
[31]
Ouyang L, Yao R, Mao S, Chen X, Na J, Sun W. Three-dimensional bioprinting of embryonic stem cells directs highly uniform embryoid body formation. Biofabrication 2015; 7(4): 044101.
[32]
Prendergast ME, Montoya G, Pereira T, Lewicki J, Solorzano R, Atala A. Microphysiological Systems: automated fabrication via extrusion bioprinting Microphysio Syst 2018; 2(3)
[33]
Barron JA, Wu P, Ladouceur HD, Ringeisen BR. Biological laser printing: a novel technique for creating heterogeneous 3-dimensional cell patterns. Biomed Microdevices 2004; 6(2): 139-47.
[34]
Guillotin B, Souquet A, Catros S, et al. Laser assisted bioprinting of engineered tissue with high cell density and microscale organization. Biomaterials 2010; 31(28): 7250-6.
[35]
Ali M, Pages E, Ducom A, Fontaine A, Guillemot F. Controlling laser-induced jet formation for bioprinting mesenchymal stem cells with high viability and high resolution. Biofabrication 2014; 6(4): 045001.
[36]
Hull CW. Apparatus for production of three-dimensional objects by stereolithography. US Patents 4575330 1986.
[37]
Lin H, Zhang D, Alexander PG, et al. Application of visible light-based projection stereolithography for live cell-scaffold fabrication with designed architecture. Biomaterials 2013; 34(2): 331-9.
[38]
Skoog SA, Goering PL, Narayan RJ. Stereolithography in tissue engineering. J Mater Sci Mater Med 2014; 25(3): 845-56.
[39]
Lu Y, Mapili G, Suhali G, Chen S, Roy K. A digital micro-mirror device-based system for the microfabrication of complex, spatially patterned tissue engineering scaffolds. J Biomed Mater Res A 2006; 77(2): 396-405.
[40]
Gauvin R, Chen Y-C, Lee JW, et al. Microfabrication of complex porous tissue engineering scaffolds using 3D projection stereolithography. Biomaterials 2012; 33(15): 3824-34.
[41]
Soman P, Chung PH, Zhang AP, Chen S. Digital microfabrication of user-defined 3D microstructures in cell-laden hydrogels. Biotechnol Bioeng 2013; 110(11): 3038-47.
[42]
Gou M, Qu X, Zhu W, et al. Bio-inspired detoxification using 3D-printed hydrogel nanocomposites. Nat Commun 2014; 5: 3774.
[43]
Huang TQ, Qu X, Liu J, Chen S. 3D printing of biomimetic microstructures for cancer cell migration. Biomed Microdevices 2014; 16(1): 127-32.
[44]
Liu J, Hwang HH, Wang P, Whang G, Chen S. Direct 3D-printing of cell-laden constructs in microfluidic architectures. Lab Chip 2016; 16(8): 1430-8.
[45]
Zhang YS, Oklu R, Dokmeci MR, Khademhosseini A. Three-dimensional bioprinting strategies for tissue engineering. Cold Spring Harb Perspect Med 2018; 8(2): a025718.
[46]
Liu W, Zhang YS, Heinrich MA, et al. Rapid Continuous Multimaterial Extrusion Bioprinting. Adv Mater 2017; 29(3): 1604630.
[47]
Miller JS, Stevens KR, Yang MT, et al. Rapid casting of patterned vascular networks for perfusable engineered three-dimensional tissues. Nat Mater 2012; 11(9): 768-74.
[48]
Kolesky DB, Truby RL, Gladman AS, Busbee TA, Homan KA, Lewis JA. 3D bioprinting of vascularized, heterogeneous cell-laden tissue constructs. Adv Mater 2014; 26(19): 3124-30.
[49]
Kolesky DB, Homan KA, Skylar-Scott MA, Lewis JA. Three-dimensional bioprinting of thick vascularized tissues. Proc Natl Acad Sci USA 2016; 113(12): 3179-84.
[50]
Lee VK, Kim DY, Ngo H, et al. Creating perfused functional vascular channels using 3D bio-printing technology. Biomaterials 2014; 35(28): 8092-102.
[51]
Bertassoni LE, Cecconi M, Manoharan V, et al. Hydrogel bioprinted microchannel networks for vascularization of tissue engineering constructs. Lab Chip 2014; 14(13): 2202-11.
[52]
Jia W, Gungor-Ozkerim PS, Zhang YS, et al. Direct 3D bioprinting of perfusable vascular constructs using a blend bioink. Biomaterials 2016; 106: 58-68.
[53]
Pi Q, Maharjan S, Yan X, et al. Digitally Tunable Microfluidic Bioprinting of Multilayered Cannular Tissues. Adv Mater 2018; 30(43): e1706913.
[54]
Zhang W, Zhang YS, Bakht SM, et al. Elastomeric free-form blood vessels for interconnecting organs on chip systems. Lab Chip 2016; 16(9): 1579-86.
[55]
Hou X, Zhang YS. Interplay between materials and microfluidics. Nat Rev Mater 2017; 2(5): 17016.
[57]
Wang G-J, Ho K-H, Hsu S-H, Wang K-P. Microvessel scaffold with circular microchannels by photoresist melting. Biomed Microdevices 2007; 9(5): 657-63.
[58]
Lima R, Oliveira MS, Ishikawa T, et al. Axisymmetric polydimethysiloxane microchannels for in vitro hemodynamic studies. Biofabrication 2009; 1(3): 035005.
[59]
Avery RK, Albadawi H, Akbari M, et al. An injectable shear-thinning biomaterial for endovascular embolization. Sci Transl Med 2016; 8(365): 365ra156.
[60]
Zhang YS, Davoudi F, Walch P, et al. Bioprinted thrombosis-on-a-chip. Lab Chip 2016; 16(21): 4097-105.
[61]
Jain A, Graveline A, Waterhouse A, Vernet A, Flaumenhaft R, Ingber DE. A shear gradient-activated microfluidic device for automated monitoring of whole blood haemostasis and platelet function. Nat Commun 2016; 7: 10176.
[62]
Lee WG, Ortmann D, Hancock MJ, Bae H, Khademhosseini A. A hollow sphere soft lithography approach for long-term hanging drop methods. Tissue Eng Part C 2009; 16(2): 249-59.
[63]
Chuter TA, Reilly LM, Faruqi RM, et al. Endovascular aneurysm repair in high-risk patients. J Vasc Surg 2000; 31(1 Pt 1): 122-33.
[64]
Sun T, Zhang YS, Pang B, Hyun DC, Yang M, Xia Y. Engineered nanoparticles for drug delivery in cancer therapy. Angew Chem Int Ed Engl 2014; 53(46): 12320-64.
[65]
Torchilin V. Tumor delivery of macromolecular drugs based on the EPR effect. Adv Drug Deliv Rev 2011; 63(3): 131-5.
[66]
Zervantonakis IK, Hughes-Alford SK, Charest JL, Condeelis JS, Gertler FB, Kamm RD. Three-dimensional microfluidic model for tumor cell intravasation and endothelial barrier function. Proc Natl Acad Sci USA 2012; 109(34): 13515-20.
[67]
Jeon JS, Zervantonakis IK, Chung S, Kamm RD, Charest JL. In vitro model of tumor cell extravasation. PLoS One 2013; 8(2): e56910.
[68]
Jeon JS, Bersini S, Gilardi M, et al. Human 3D vascularized organotypic microfluidic assays to study breast cancer cell extravasation. Proc Natl Acad Sci USA 2015; 112(1): 214-9.
[69]
Lee VK, Dai G, Zou H, Yoo S-S. Generation of 3-D glioblastomavascular
niche using 3-D bioprinting. Biomedical Engineering Conference
(NEBEC) 2015.2015 Apr 17-19; Troy, USA.2015.