[1]
Bauer, A.Z.; Kriebel, D.; Herbert, M.R.; Bornehag, C.G.; Swan, S.H. Prenatal paracetamol exposure and child neurodevelopment: A review. Horm. Behav., 2018, 101, 125-147.
[2]
Bornehag, C.G.; Reichenberg, A.; Hallerback, M.U.; Wikstrom, S.; Koch, H.M.; Jonsson, B.A.; Swan, S.H. Prenatal exposure to acetaminophen and children’s language development at 30 months. Eur. Psych., 2018, 51, 98-103.
[3]
Cohen, I.V.; Cirulli, E.T.; Mitchell, M.W.; Jonsson, T.J.; Yu, J.; Shah, N.; Spector, T.D.; Guo, L.; Venter, J.C.; Telenti, A. Acetaminophen (paracetamol) use modifies the sulfation of sex hormones. EBioMed., 2018, 28, 316-323.
[4]
Shaheen, S.O.; Newson, R.B.; Ring, S.M.; Rose-Zerilli, M.J.; Holloway, J.W.; Henderson, A.J. Prenatal and infant acetaminophen exposure, antioxidant gene polymorphisms, and childhood asthma. J. Allergy Clin. Immunol., 2010, 126(6), 1141-1148.
[5]
Magnus, M.C.; Karlstad, Ø.; Håberg, S.E.; Nafstad, P.; Davey Smith, G.; Nystad, W. Prenatal and infant paracetamol exposure and development of asthma: The Norwegian mother and child cohort study. Int. J. Epidemiol., 2016, 45(2), 512-522.
[6]
Reel, J.R.; Lawton, A.D.; Lamb, J.C.T. Reproductive toxicity evaluation of acetaminophen in Swiss CD-1 mice using a continuous breeding protocol. Fundam. Appl. Toxicol., 1992, 18(2), 233-239.
[7]
Kristensen, D.M.; Hass, U.; Lesné, L.; Lottrup, G.; Jacobsen, P.R.; Desdoits-Lethimonier, C.; Boberg, J.; Petersen, J.H.; Toppari, J.; Jensen, T.K.; Brunak, S.; Skakkebaek, N.E.; Nellemann, C.; Main, K.M.; Jégou, B.; Leffers, H. Intrauterine exposure to mild analgesics is a risk factor for development of male reproductive disorders in human and rat. Hum. Reprod., 2011, 26(1), 235-244.
[8]
Thorpe, P.G.; Gilboa, S.M.; Hernandez-Diaz, S.; Lind, J.; Cragan, J.D.; Briggs, G.; Kweder, S.; Friedman, J.M.; Mitchell, A.A.; Honein, M.A. Medications in the first trimester of pregnancy: Most common exposures and critical gaps in understanding fetal risk. Pharmacoepidemiol. Drug Saf., 2013, 22(9), 1013-1018.
[9]
Thiele, K.; Kessler, T.; Arck, P.; Erhardt, A.; Tiegs, G. Acetaminophen and pregnancy: Short- and long-term consequences for mother and child. J. Reprod. Immunol., 2013, 97(1), 128-139.
[10]
Parker, W.; Hornik, C.D.; Bilbo, S.; Holzknecht, Z.E.; Gentry, L.; Rao, R.; Lin, S.S.; Herbert, M.R.; Nevison, C.D. The role of oxidative stress, inflammation and acetaminophen exposure from birth to early childhood in the induction of autism. J. Int. Med. Res., 2017, 45(2), 407-438.
[11]
Andrade, C. Use of acetaminophen (paracetamol) during pregnancy and the risk of autism spectrum disorder in the offspring. J. Clin. Psych., 2016, 77(2), e152-e154.
[12]
Klopčič, I.; Markovič, T.; Mlinarič-Raščan, I.; Sollner, D.M. Endocrine disrupting activities and immunomodulatory effects in lymphoblastoid cell lines of diclofenac, 4-hydroxydiclofenac and paracetamol. Toxicol. Lett., 2018, 294, 95-104.
[13]
Boeynaems, J.M. Van sande, J.; Dumont, J.E. Blocking of dog thyroid secretion in vitro by inhibitors of prostaglandin synthesis. Biochem. Pharmacol., 1975, 24(13-14), 1333-1337.
[14]
Jaeschke, H.; Xie, Y.; McGill, M.R. Acetaminophen-induced liver injury: From animal models to humans. J. Clin. Transl. Hepatol., 2014, 2(3), 153-161.
[15]
Karimi, K.; Keßler, T.; Thiele, K.; Ramisch, K.; Erhardt, A.; Huebener, P.; Barikbin, R.; Arck, P.; Tiegs, G. Prenatal acetaminophen induces liver toxicity in dams, reduces fetal liver stem cells, and increases airway inflammation in adult offspring. J. Hepatol., 2015, 62(5), 1085-1091.
[16]
McGreal, S.R.; Bhushan, B.; Walesky, C.; McGill, M.R.; Lebofsky, M.; Kandel, S.E.; Winefield, R.D.; Jaeschke, H.; Zachara, N.E.; Zhang, Z.; Tan, E.P.; Slawson, C.; Apte, U. Modulation of O-GlcNAc levels in the liver impacts acetaminophen-induced liver injury by affecting protein adduct formation and glutathione synthesis. Toxicol. Sci., 2018, 162(2), 599-610.
[17]
Hira, K.; Sultana, V.; Ara, J.; Haque, S.E. Protective role of Sargassum species in liver and kidney dysfunctions and associated disorders in rats intoxicated with carbon tetrachloride and acetaminophen. Pak. J. Pharm. Sci., 2017, 30(3), 721-728.
[18]
Hanafy, A.; Aldawsari, H.M.; Badr, J.M.; Ibrahim, A.K.; Abdel-Hady, S.E.S. Evaluation of hepatoprotective activity of adansonia digitata extract on acetaminophen-induced hepatotoxicity in rats. Evid. Based Complement. Alternat. Med., 2016, 2016, 1-7.
[19]
Larrey, D.; Letteron, P.; Foliot, A.; Descatoire, V.; Degott, C.; Geneve, J.; Tinel, M.; Pessayre, D. Effects of pregnancy on the toxicity and metabolism of acetaminophen in mice. J. Pharmacol. Exp. Ther., 1986, 237(1), 283-291.
[20]
Lin, Z.; Wu, F.; Lin, S.; Pan, X.; Jin, L.; Lu, T.; Shi, L.; Wang, Y.; Xu, A.; Li, X. Adiponectin protects against acetaminophen-induced mitochondrial dysfunction and acute liver injury by promoting autophagy in mice. J. Hepatol., 2014, 61(4), 825-831.
[21]
Reshi, M.S.; Shrivastava, S.; Jaswal, A.; Sinha, N.; Uthra, C.; Shukla, S. Gold nanoparticles ameliorate acetaminophen induced hepato-renal injury in rats. Exp. Toxicol. Pathol., 2017, 69(4), 231-240.
[22]
Fu, T.; Wang, S.; Liu, J.; Cai, E.; Li, H.; Li, P.; Zhao, Y. Protective effects of α-mangostin against acetaminophen-induced acute liver injury in mice. Eur. J. Pharmacol., 2018, 827, 173-180.
[23]
Williams, C.D.; Jaeschke, H. Role of the innate and adaptive immunity during drug-induced liver injury. Toxicol. Res., 2012, 44(1), 161-170.
[24]
Malik, R.; Hodgson, H. The relationship between the thyroid gland and the liver. Q. J. Med., 2002, 95(9), 559-569.
[25]
Yao, X.; Hou, S.; Zhang, D.; Xia, H.; Wang, Y-C.; Jiang, J.; Yin, H.; Ying, H. Regulation of fatty acid composition and lipid storage by thyroid hormone in mouse liver. Cell & Biosci., 2014, 4, 38.
[26]
Ahmed, R.G. Maternal hypothyroidism and fetal hepatic diseases: ongoing debates and key issues. ARC J. Pharmac. Sciences, 2018, 4(1), 20-24.
[27]
Ahmed, O.M.; El-Gareib, A.W.; El-Bakry, A.M.; Abd El-Tawab, S.M.; Ahmed, R.G. Thyroid hormones states and brain development interactions. Int. J. Dev. Neurosci., 2008, 26(2), 147-209.
[28]
Ahmed, R.G.; El-Gareib, A.W.; Incerpi, S. Lactating PTU exposure: II- Alters thyroid-axis and prooxidant-antioxidant balance in neonatal cerebellum. Int. Res. J. Natural Sciences, 2014, 2(1), 1-20.
[29]
El-bakry, A.M.; El-Ghareeb, A.W.; Ahmed, R.G. Comparative study of the effects of experimentally-induced hypothyroidism and hyperthyroidism in some brain regions in albino rats. Int. J. Dev. Neurosci., 2010, 28, 371-389.
[30]
Ahmed, R.G. Gestational caffeine exposure acts as a fetal thyroid-cytokine disruptor by activating caspase-3/BAX/Bcl-2/Cox2/ NF-κB at ED 20. Toxicol. Res. (Camb.), 2019, 8(2), 196-205.
[31]
Ahmed, O.M.; Abd El-Tawab, S.M.; Ahmed, R.G. Effects of experimentally induced maternal hypothyroidism and hyperthyroidism on the development of rat offspring: I- The development of the thyroid hormones-neurotransmitters and adenosinergic system interactions. Int. J. Dev. Neurosci., 2010, 28(6), 437-454.
[32]
Ahmed, O.M.; Ahmed, R.G.; El-Gareib, A.W.; El-Bakry, A.M.; Abd El-Tawab, S.M. Effects of experimentally induced maternal hypothyroidism and hyperthyroidism on the development of rat offspring: II-The developmental pattern of neurons in relation to oxidative stress and antioxidant defense system. Int. J. Dev. Neurosci., 2012, 30(6), 517-537.
[33]
Ahmed, R.G. Perinatal 2,3,7,8-tetrachlorodibenzo-p-dioxin exposure alters developmental neuroendocrine system. Food Chem. Toxicol., 2011, 49(6), 1276-1284.
[34]
Ahmed, R.G. Early weaning PCB 95 exposure alters the neonatal endocrine system: Thyroid adipokine dysfunction. J. Endocrinol., 2013, 219(3), 205-215.
[35]
Ahmed, R.G. Maternal bisphenol A alters fetal endocrine system: Thyroid adipokine dysfunction. Food Chem. Toxicol., 2016, 95, 168-174.
[36]
Ahmed, R.G. Gestational dexamethasone alters fetal neuroendocrine axis. Toxicol. Lett., 2016, 258, 46-54.
[37]
Ahmed, R.G.; Abdel-Latif, M.; Ahmed, F. Protective effects of GM-CSF in experimental neonatal hypothyroidism. Int. Immunopharmacol., 2015, 29(2), 538-543.
[38]
Ahmed, R.G.; Abdel-Latif, M.; Mahdi, E.; El-Nesr, K. Immune stimulation improves endocrine and neural fetal outcomes in a model of maternofetal thyrotoxicosis. Int. Immunopharmacol., 2015, 29(2), 714-721.
[39]
Ahmed, R.G.; El-Gareib, A.W.; Shaker, H.M. Gestational 3,3′,4,4′,5-pentachlorobiphenyl (PCB 126) exposure disrupts fetoplacental unit: Fetal thyroid-cytokine dysfunction. Life Sciences., 2018, 192, 213-220.
[40]
Ahmed, R.G.; El-Ghareib, A.W. Maternal carbamazepine alters fetal neuroendocrine-cytokine axis. Toxicol., 2017, 382, 59-66.
[41]
Ahmed, R.G.; Incerpi, S. Gestational doxorubicin alters fetal thyroid-brain axis. Int. J. Dev. Neurosci., 2013, 31(2), 96-104.
[42]
Ahmed, R.G.; Incerpi, S.; Ahmed, F.; Gaber, A. The developmental and physiological interactions between free radicals and antioxidant: Effect of environmental pollutants. J. Natural Sci. Res., 2013, 3(13), 74-110.
[43]
Ahmed, R.G.; Walaa, G.H.; Asmaa, F.S. Suppressive effects of neonatal bisphenol A on the neuroendocrine system. Toxicol. Ind. Health J., 2018, 34(6), 397-407.
[44]
Pingili, R.B.; Pawar, A.K.; Challa, S.R. Systemic exposure of paracetamol (acetaminophen) was enhanced by quercetin and chrysin co-administration in Wistar rats and in vitro model: Risk of liver toxicity. Drug Dev. Ind. Pharm., 2015, 41(11), 1793-1800.
[45]
Dean, A.; van den Driesche, S.; Wang, Y.; McKinnell, C.; Macpherson, S.; Eddie, S.L.; Kinnell, H.; Hurtado-Gonzalez, P.; Chambers, T.J.; Stevenson, K. Analgesic exposure in pregnant rats affects fetal germ cell development with inter-generational reproductive consequences. Sci. Rep., 2016, 6, 19789.
[46]
Reitman, S.; Frankel, S. A colourimetric method for the determination of serum glutamic oxaloacetic and glutamic pyruvic transaminases. Am. J. Clin. Pathol., 1957, 28(1), 56-65.
[47]
Kind, P.R.N. King, E.G. Estimation of plasma phosphate by determination of hydrolysed phenol with amino-antipyrine. J. Clin. Path., 1954, 7(4), 322-326.
[48]
Doumas, B.T.; Watson, W.A.; Biggs, H.G. Determination of serum albumin. J. Clin. Chem. Acta., 1971, 7(31), 87-89.
[49]
Bancroft, J.D.; Gamble, M. Theory and practice of histological techniques. 6thed. Philadelphia, PA. Churchill Livingstone/Elsevier., 2008.
[50]
Koster, J.F.; Biermond, P.; Swaak, A.J.G. Intracellular and extracellular sulphhydryl levels in rheumatoid arthritis. Ann. Rheum. Dis., 1986, 45(1), 44-46.
[51]
Beutler, E.; Duron, O.; Kelly, B.M. Improved method for the determination of blood glutathione. J. Lab. Clin. Med., 1963, 61(5), 882-888.
[52]
Jollow, D.J.; Mitchell, J.R.; Zampaglione, N.; Gillette, J.R. Bromobenzene induced liver necrosis: Protective role of glutathione and evidence for 3,4‐bromobenzeneoxide as the hepatotoxic intermediate. Pharmacol., 1974, 11(3), 151-169.
[53]
Pinto, R.E.; Bartley, W. The effect of age and sex on glutathione reductase and glutathione peroxidase activities and on aerobic glutathione oxidation in rat liver homogenates. Biochem., 1989, 112(1), 109-115.
[54]
Sedlak, I.; Lindsay, R.H. Estimation of total, protein-bound and non-protein sulfhydryl groups in tissue with Ellman’s reagent. Anal. Biochem., 1968, 25, 192-205.
[55]
Cohen, C.; Dembiec, D.; Marcus, J. Measurement of catalase activity in tissue extracts. Anal. Biochem., 1970, 34, 30-38.
[56]
Draper, H.H.; Hadley, M. Malondialdehyde determination as index of lipid peroxidation. Methods Enzymol., 1990, 186, 421-431.
[57]
Dutta, A.; Sarkar, D.; Gurib-Fakim, A.; Mandal, C.; Chatterjee, M. In vitro and in vivo activity of aloe vera leaf exudate in experimental visceral leishmaniasis. Parasitol. Res., 2008, 102(6), 1235-1242.
[58]
Sergiev, I.; Alexieva, V.; Karanov, E. Effect of spermine, atrazine and combination between them on some endogenous protective systems and stress markers in plants. Cr. Acad. Bulg. Sci.., 1997, 51, 121-124.
[59]
Roa, M.; Blane, K.; Zonneberg, M. One-way analysis, version 1a(c). pc-stat; University of Georgia: Athens, USA, 1985.
[60]
Candelotti, E.; De Vito, P.; Ahmed, R.G.; Luly, P.; Davis, P.J.; Pedersen, J.Z.; Lin, H-Y.; Incerpi, S. Thyroid hormones crosstalk with growth factors: Old facts and new hypotheses. Immun. Endoc. & Metab. Agents in Med. Chem., 2015, 15(1), 71-85.
[61]
Van Herck, S.L.J.; Geysens, S.; Bald, E.; Chwatko, G.; Delezie, E.; Dianati, E.; Ahmed, R.G.; Darras, V.M. Maternal transfer of methimazole and effects on thyroid hormone availability in embryonic tissues. Endocrinology, 2013, 218(1), 105-115.
[62]
Guyton, A.C.; Hall, J.F. Textbook of medical physiol, 10th ed; W.B. Saunders Comp. Philadeliphia, 2002.
[63]
Sebe, A.; Satar, S.; Sari, A. Thyroid storm induced by aspirin intoxication and the effect of hemodialysis: A case report. Adv. Ther., 2004, 21(3), 173-177.
[64]
Forfar, J.C.; Pottage, A.; Toft, A.D.; Lrvine, W.J.; Clements, J.A.; Prwscott, L.F. Paracetamol pharmacokinetics in thyroid disease. Eur. J. Clin. Pharmacol., 1980, 18(3), 269-273.
[65]
Rodighiero, V. Drug pharmacokinetics in thyroid dysfunction. Minerva Endocrinol., 1985, 10, 97-113.
[66]
Ishihara, A.; Sawatsubashi, S.; Yamauchi, K. Endocrine disrupting chemicals: Interference of thyroid hormone binding to transthyretins and to thyroid hormone receptors. Mol. Cell. Endocrinol., 2003, 199(31), 105-117.
[67]
Huang, M.J.; Liaw, Y.F. Clinical associations between thyroid and liver diseases. J. Gastroenterol. Hepatol., 1995, 10(3), 344-350.
[68]
Rabiul, H.; Subhasish, M.; Sinha, S.; Roy, M.G.; Sinha, D.; Gupta, S. Hepatoprotective activity of Clerodendron inerme against paracetamol induced hepatic injury in rats for pharmaceutical product. Int. J. Drug Dev. Res., 2011, 3(1), 118-126.
[69]
Kołaciński, Z.; Ruciński, P. Paracetamol: Therapeutic action, pathogenesis and treatment of acute poisoning complicated by severe liver damage. Przegl. Lek., 2003, 60, 218-222.
[70]
Mitchell, J.R.; Jollow, D.J.; Potter, W.Z.; Gillette, J.R.; Brodie, B.B. Acetaminophen induced hepatic necrosis. IV. Protective role of glutathione. J. Pharmacol. Exp. Ther., 1973, 187(1), 211-217.
[71]
Petrulea, M.S.; Muresan, A.; Duncea, I. Oxidative stress and antioxidant status in hypo- and hyperthyroidism. In: The Antioxidant Enzyme.Chapter 8; El-Missiry, M.A., Ed.; Croatia: Intech Open Access Publisher, 2012; pp. 197-236.
[72]
Reiter, R.J.; Tan, D.X.; Manchester, L.C.; Qi, W. Biochemical reactivity of melatonin with reactive oxygen and nitrogen species. A review of the evidence. Cell Biochem. Biophys., 2001, 34(2), 237-256.
[73]
Park, B.K.; Kitteringham, N.R.; Maggs, J.L.; Pirmohamed, M.; Williams, D.P. The role of metabolic activation in drug-induced hepatotoxicity. Annu. Rev. Pharmacol. Toxicol., 2005, 45, 177-202.
[74]
Guzy, J.; Choranová, Z.; Mareková, M.; Chavková, Z.; Tomečková, V.; Mojžišová, G.; Kušnír, J. Effect of quercetin on paracetamol induced rat liver mitochondrial dysfunction. Biologia (Bratisl.), 2004, 59(3), 399-403.
[75]
Xie, Y.; McGill, M.R.; Dorko, K.; Kumer, S.C.; Schmitt, T.M.; Forster, J.; Jaeschke, H. Mechanisms of acetaminophen-induced cell death in primary human hepatocytes. Toxicol. Appl. Pharmacol., 2014, 279(3), 266-274.
[76]
Jaeschke, H.; Lemasters, J.J. Apoptosis versus oncotic necrosis in hepatic ischemia/reperfusion injury. Gastroenterol., 2003, 125(4), 1246-1257.
[77]
Masubuchi, Y.; Suda, C.; Horie, T. Involvement of mitochondrial permeability transition in acetaminophen-induced liver injury in mice. Hepatol., 2005, 42(1), 110-116.
[78]
Ramachandran, A.; Lebofsky, M.; Baines, C.P.; Lemasters, J.J.; Jaeschke, H. Cyclophilin D deficiency protects against acetaminophen-induced oxidant stress and liver injury. Free Radic. Res., 2011, 45(2), 156-164.
[79]
Jaeschke, H.; Williams, C.D.; Ramachandran, A.; Bajt, M.L. Acetaminophen hepatotoxicity and repair: The role of sterile inflammation and innate immunity. Liver Int., 2012, 32(1), 8-20.
[80]
Hanawa, N.; Shinohara, M.; Saberi, B.; Gaarde, W.A.; Han, D.; Kaplowitz, N. Role of JNK translocation to mitochondria leading to inhibition of mitochondria bioenergetics in acetaminophen-induced liver injury. Biol. Chem., 2008, 283(20), 13565-13577.
[81]
Zhou, Y.D.; Hou, J.G.; Liu, W.; Ren, S.; Wang, Y.P.; Zhang, R.; Chen, C.; Wang, Z.; Li, W. 20(R)-ginsenoside Rg3, a rare saponin from red ginseng, ameliorates acetaminophen-induced hepatotoxicity by suppressing PI3K/AKT pathway-mediated inflammation and apoptosis. Int. Immunopharmacol., 2018, 59, 21-30.
[82]
Bajt, M.L.; Lawson, J.A.; Vonderfecht, S.L.; Gujral, J.S.; Jaeschke, H. Protection against Fas receptor-mediated apoptosis in hepatocytes and nonparenchymal cells by a caspase-8 inhibitor in vivo: Evidence for a postmitochondrial processing of caspase-8. Toxicol. Sci., 2000, 58(1), 109-117.
[83]
Schattenberg, J.M.; Galle, P.R.; Schuchmann, M. Apoptosis in liver disease. Liver Int., 2006, 26, 904-911.
[84]
Lawson, J.A.; Farhood, A.; Hopper, R.D.; Bajt, M.L.; Jaeschke, H. The hepatic inflammatory response after acetaminophen overdose: role of neutrophils. Toxicol. Sci., 2000, 54(2), 509-516.
[85]
Martin-Murphy, B.V.; Holt, M.P.; Ju, C. The role of damage associated molecular pattern molecules in acetaminophen-induced liver injury in mice. Toxicol. Lett., 2010, 192(3), 387-394.
[86]
McGill, M.R.; Williams, C.D.; Xie, Y.; Ramachandran, A.; Jaeschke, H. Acetaminophen-induced liver injury in rats and mice: comparison of protein adducts, mitochondrial dysfunction, and oxidative stress in the mechanism of toxicity. Toxicol. Appl. Pharmacol., 2012, 264(3), 387-394.
[87]
Imaeda, A.B.; Watanabe, A.; Sohail, M.A.; Mahmood, S.; Mohamadnejad, M.; Sutterwala, F.S.; Flavell, R.A.; Mehal, W.Z. Acetaminophen-induced hepatotoxicity in mice is dependent on Tlr9 and the Nalp3 inflammasome. J. Clin. Invest., 2009, 119(2), 305-314.
[88]
Liu, Z.X.; Han, D.; Gunawan, B.; Kaplowitz, N. Neutrophil depletion protects against murine acetaminophen hepatotoxicity. Hepatol., 2006, 43(6), 1220-1230.