[1]
Pocai, A. Unraveling oxyntomodulin, GLP1’s enigmatic brother. J. Endocrinol., 2012, 215, 335-346.
[2]
Patel, V.J.; Joharapurkar, A.A.; Kshirsagar, S.G.; Patel, K.N.; Shah, G.B.; Jain, M.R. Therapeutic potential of coagonists of glucagon and GLP-1. Cardiovasc. Hematol. Agents Med. Chem., 2014, 12, 126-133.
[3]
Patel, V.; Joharapurkar, A.; Kshirsagar, S.; Patel, H.M.; Pandey, D.; Patel, D.; Sutariya, B.; Patel, M.; Bahekar, R.; Jain, M.R. Balanced coagonist of GLP-1 and glucagon receptors corrects dyslipidemia by improving FGF21 sensitivity in hamster model. Drug Res. (Stuttg.), 2017, 67, 730-736.
[4]
Patel, V.; Joharapurkar, A.; Kshirsagar, S.; Sutariya, B.; Patel, M.; Pandey, D.; Patel, H.; Ranvir, R.; Kadam, S.; Patel, D.; Bahekar, R.; Jain, M. Coagonist of GLP-1 and glucagon decreases liver inflammation and atherosclerosis in dyslipidemic condition. Chem. Biol. Interact., 2018, 282, 13-21.
[5]
Patel, V.; Joharapurkar, A.; Kshirsagar, S.; Sutariya, B.; Patel, M.; Patel, H.; Pandey, D.; Patel, D.; Ranvir, R.; Kadam, S.; Bahekar, R.; Jain, M. Coagonist of GLP-1 and glucagon receptor ameliorates development of non-alcoholic fatty liver disease. Cardiovasc. Hematol. Agents Med. Chem., 2018, 16, 35-43.
[6]
Patel, V.J.; Joharapurkar, A.A.; Kshirsagar, S.G.; Sutariya, B.K.; Patel, M.S.; Patel, H.M.; Pandey, D.K.; Bahekar, R.H.; Jain, M.R. Coagonist of glucagon-like peptide-1 and glucagon receptors ameliorates kidney injury in murine models of obesity and diabetes mellitus. World J. Diabetes, 2018, 9, 80-91.
[7]
Patel, V.; Joharapurkar, A.; Kshirsagar, S.; Sutariya, B.; Patel, M.; Patel, H.; Pandey, D.; Patel, D.; Bahekar, R.; Jain, M. Central administration of coagonist of GLP-1 and glucagon receptors improves dyslipidemia. Biomed. Pharmacother., 2018, 98, 364-371.
[8]
Trauner, M.; Claudel, T.; Fickert, P.; Moustafa, T.; Wagner, M. Bile Acids as Regulators of Hepatic Lipid and Glucose Metabolism. Dig. Dis., 2010, 28, 220-224.
[9]
González-Regueiro, J.A.; Moreno-Castañeda, L.; Uribe, M.; Chávez-Tapia, N.C. The Role of Bile Acids in Glucose Metabolism and Their Relation with Diabetes. Ann. Hepatol., 2017, 16, 16-21.
[10]
Charach, G.; Rabinovich, P.D.; Konikoff, F.M.; Grosskopf, I.; Weintraub, M.S.; Gilat, T. Decreased fecal bile acid output in patients with coronary atherosclerosis. J. Med., 1998, 29, 125-136.
[11]
Gylling, H.; Hallikainen, M.; Rajaratnam, R.A.; Simonen, P.; Pihlajamäki, J.; Laakso, M.; Miettinen, T.A. The metabolism of plant sterols is disturbed in postmenopausal women with coronary artery disease. Metabolism, 2009, 58, 401-407.
[12]
Fiorucci, S.; Rizzo, G.; Donini, A.; Distrutti, E.; Santucci, L. Targeting farnesoid X receptor for liver and metabolic disorders. Trends Mol. Med., 2007, 13, 298-309.
[13]
McAninch, E.A.; Bianco, A.C. Thyroid hormone signaling in energy homeostasis and energy metabolism. Ann. N. Y. Acad. Sci., 2014, 1311, 77-87.
[14]
Song, Y.; Xu, C.; Shao, S.; Liu, J.; Xing, W.; Xu, J.; Qin, C.; Li, C.; Hu, B.; Yi, S.; Xia, X.; Zhang, H.; Zhang, X.; Wang, T.; Pan, W.; Yu, C.; Wang, Q.; Lin, X.; Wang, L.; Gao, L.; Zhao, J. Thyroid-stimulating hormone regulates hepatic bile acid homeostasis via SREBP-2/HNF-4α/CYP7A1 axis. J. Hepatol., 2015, 62, 1171-1179.
[15]
Kim, T.; Nason, S.; Holleman, C.; Pepin, M.; Wilson, L.; Berryhill, T.F.; Wende, A.R.; Steele, C.; Young, M.E.; Barnes, S.; Drucker, D.J.; Finan, B.; DiMarchi, R.; Perez-Tilve, D.; Tschöp, M.; Habegger, K.M. Glucagon Receptor Signaling Regulates Energy Metabolism via Hepatic Farnesoid X Receptor and Fibroblast Growth Factor 21. Diabetes, 2018, 67, 1773-1782.
[16]
Huang, G.; He, C.; Meng, F.; Li, J.; Zhang, J.; Wang, Y. Glucagon-like peptide (GCGL) is a novel potential TSH-releasing factor (TRF) in Chickens: I) Evidence for its potent and specific action on stimulating TSH mRNA expression and secretion in the pituitary. Endocrinology, 2014, 155, 4568-4580.
[17]
Ueta, C.B.; Olivares, E.L.; Bianco, A.C. Responsiveness to thyroid hormone and to ambient temperature underlies differences between brown adipose tissue and skeletal muscle thermogenesis in a mouse model of diet-induced obesity. Endocrinology, 2011, 152, 3571-3581.
[18]
McIntosh, L.M.; Pernitsky, A.N.; Anderson, J.E. The effects of altered metabolism (hypothyroidism) on muscle repair in the mdx dystrophic mouse. Muscle Nerve, 1994, 17, 444-453.
[19]
Day, J.W.; Ottaway, N.; Patterson, J.T.; Gelfanov, V.; Smiley, D.; Gidda, J.; Findeisen, H.; Bruemmer, D.; Drucker, D.J.; Chaudhary, N.; Holland, J.; Hembree, J.; Abplanalp, W.; Grant, E.; Ruehl, J.; Wilson, H.; Kirchner, H.; Lockie, S.H.; Hofmann, S.; Woods, S.C.; Nogueiras, R.; Pfluger, P.T.; Perez-Tilve, D.; Dimarchi, R.; Tschöp, M.H.; Tschop, M.H. A new glucagon and GLP-1 co-agonist eliminates obesity in rodents. Nat. Chem. Biol., 2009, 5, 749-757.
[20]
Patel, V.; Joharapurkar, A.; Dhanesha, N.; Kshirsagar, S.; Patel, K.; Bahekar, R.; Shah, G.; Jain, M. Co-agonist of glucagon and GLP-1 reduces cholesterol and improves insulin sensitivity independent of its effect on appetite and body weight in diet-induced obese C57 mice. Can. J. Physiol. Pharmacol., 2013, 91, 1009-1015.
[21]
Patel, V.; Joharapurkar, A.; Kshirsagar, S.; Patel, H.M.; Pandey, D.; Patel, D.; Shah, K.; Bahekar, R.; Shah, G.B.; Jain, M.R. Central and Peripheral Glucagon Reduces Hyperlipidemia in Rats and Hamsters. Drug Res. (Stuttg.), 2017, 67, 318-326.
[22]
Patel, V.; Joharapurkar, A.A.; Kshirsagar, S.G.; Patel, K.N.; Bahekar, R.; Shah, G.; Jain, M.R. Central GLP-1 receptor activation improves cholesterol metabolism partially independent of its effect on food intake. Can. J. Physiol. Pharmacol., 2016, 94, 161-167.
[23]
Chiang, J.Y. Recent advances in understanding bile acid homeostasis. F1000 Res., 2017, 6, 2029.
[24]
Boyer, J.L. Bile formation and secretion. Compr. Physiol., 2013, 3, 1035-1078.
[25]
Gebhard, R.L.; Prigge, W.F. Thyroid hormone differentially augments biliary sterol secretion in the rat. II. The chronic bile fistula model. J. Lipid Res., 1992, 33, 1467-1473.
[26]
Bonde, Y.; Breuer, O.; Lütjohann, D.; Sjöberg, S.; Angelin, B.; Rudling, M. Thyroid hormone reduces PCSK9 and stimulates bile acid synthesis in humans. J. Lipid Res., 2014, 55, 2408-2415.
[27]
Gälman, C.; Bonde, Y.; Matasconi, M.; Angelin, B.; Rudling, M. Dramatically increased intestinal absorption of cholesterol following hypophysectomy is normalized by thyroid hormone. Gastroenterology, 2008, 134, 1127-1136.
[28]
Ness, G.C.; Pendleton, L.C.; Li, Y.C.; Chiang, J.Y. Effect of thyroid hormone on hepatic cholesterol 7 alpha hydroxylase, LDL receptor, HMG-CoA reductase, farnesyl pyrophosphate synthetase and apolipoprotein A-I mRNA levels in hypophysectomized rats. Biochem. Biophys. Res. Commun., 1990, 172, 1150-1156.
[29]
Tan, T.M.; Field, B.C.T.; McCullough, K.A.; Troke, R.C.; Chambers, E.S.; Salem, V.; Gonzalez, M.J.; Baynes, K.C.R.; De, S.A.; Viardot, A.; Alsafi, A.; Frost, G.S.; Ghatei, M.A.; Bloom, S.R.; Maffe, J.G.; Baynes, K.C.R.; De Silva, A.; Viardot, A.; Alsafi, A.; Frost, G.S.; Ghatei, M.A.; Bloom, S.R. Coadministration of glucagon-like peptide-1 during glucagon infusion in humans results in increased energy expenditure and amelioration of hyperglycemia. Diabetes, 2013, 62, 1131-1138.