[1]
Martini S. An overview of ultrasound. in Sonocrystallization of Fats2013 , Springer p 7-16.
[2]
Oberli MA, Schoellhammer CM, Langer R, Blankschtein D. Ultrasound-enhanced transdermal delivery: recent advances and future challenges. Ther Deliv 2014; 5(7): 843-57.
[3]
Hoogland R. Ultrasound therapy1986 Enraf-Nonius.
[4]
Boucaud A, Machet L, Arbeille B, et al. In vitro study of low-frequency ultrasound-enhanced transdermal transport of fentanyl and caffeine across human and hairless rat skin. Int J Pharm 2001; 228(1-2): 69-77.
[5]
Kost J, Levy D, Langer R. Ultrasound as a transdermal enhancer. Top Drug Deliv Formul 1989; 42: 603-32.
[6]
Mutoh M, Ueda H, Nakamura Y, et al. Characterization of transdermal solute transport induced by low-frequency ultrasound in the hairless rat skin. J Control Release 2003; 92(1-2): 137-46.
[7]
Cagnie B1. Vinck E, Rimbaut S, Vanderstraeten G. Phonophoresis versus topical application of ketoprofen: comparison between tissue and plasma levels. Phys Ther 2003; 83(8): 707-12.
[8]
Jacobsen F, Juhl PM. Fundamentals of General Linear Acoustics2013 : John Wiley & Sons.
[9]
Fahy FJ, Salmon V. Sound intensity1990, ASA.
[10]
FDA US. Guidance for Industry and FDA Staff Information for Manufacturers Seeking Marketing Clearance of Diagnostic Ultrasound Systems and Transducers. Rockville, MD: FDA 2008.
[11]
Middleton W, Kurtz A, Hertzberg B. Practical physics Ultrasound:
the requisites 2nd ed St Louis: Mosby, 2004 4: p 18-21.
[12]
Lieu D. Ultrasound physics and instrumentation for pathologists. Arch Pathol Lab Med 2010; 134(10): 1541-56.
[13]
Tressler JF, Cao W, Uchino K, Newnham RE. Finite element analysis of the cymbal-type flextensional transducer. IEEE Trans Ultrason Ferroelectr Freq Control 1998; 45(5): 1363-9.
[14]
Mulvihill ML, Snook KA, Van Ess IR, et al. Ultrasonic transducer and transdermal delivery system2016 Google Patents
US20160303360A1
[15]
Jabbari N, Asghari MH, Ahmadian H, Mikaili P. Developing a commercial air ultrasonic ceramic transducer to transdermal insulin delivery. J Med Signals Sens 2015; 5(2): 117-2.
[16]
Huan H, Gao C, Liu L, Sun Q, Zhao B, Yan L. Research of ultrasound-mediated transdermal drug delivery system using cymbal-type piezoelectric composite transducer. Int J Thermophys 2015; 36(5-6): 1312-9.
[17]
Redding Jr B.K.. Method and apparatus for measuring the dose remaining upon a transdermal drug delivery device 2017. Google
Patents US 15/323,641
[18]
Redding Jr B.K.. Systems and Methods for Enhancing the Delivery of Compounds to Skin Pores using Ultrasonic Waveforms 2018. Google Patents US 15/623,020
[19]
Watkinson AC. Transdermal and topical drug delivery todayTopical and Transdermal Drug Delivery: Principles and Practice
2012: 357-366
[20]
O’Brien Jr W.D.. Ultrasound–biophysics mechanisms. Prog Biophys Mol Biol 2007; 93(1-3): 212-55.
[21]
Polat BE, Hart D, Langer R, Blankschtein D. Ultrasound-mediated transdermal drug delivery: mechanisms, scope, and emerging trends. J Control Release 2011; 152(3): 330-48.
[22]
Byl NN. The use of ultrasound as an enhancer for transcutaneous drug delivery: phonophoresis. Phys Ther 1995; 75(6): 539-53.
[23]
Bommannan D, Okuyama H, Stauffer P, Guy RH, Sonophoresis I. The use of high-frequency ultrasound to enhance transdermal drug delivery. Pharm Res 1992; 9(4): 559-64.
[24]
Boucaud A, Montharu J, Machet L, et al. Clinical, histologic, and electron microscopy study of skin exposed to low‐frequency ultrasound. Anat Rec 2001; 264(1): 114-9.
[25]
Simonin J-P. On the mechanisms of in vitro and in vivo phonophoresis. J Control Release 1995; 33(1): 125-41.
[26]
Tang H, Wang CC, Blankschtein D, Langer R. An investigation of the role of cavitation in low-frequency ultrasound-mediated transdermal drug transport. Pharm Res 2002; 19(8): 1160-9.
[27]
Suslick KS. The chemical effects of ultrasound. Scientific
American 1989; 260(2): 80-6.
[28]
Crum LA, Mason TJ, Reisse JL, Suslick KS. Sonochemistry and SonoluminescenceVol 524 2013 Springer Science & Business
Media.
[29]
Gaertner W. Frequency dependence of ultrasonic cavitation. J Acoust Soc Am (JASA) 1954; 26(6): 977-80.
[30]
Ueda H, Mutoh M, Seki T, Kobayashi D, Morimoto Y. Acoustic cavitation as an enhancing mechanism of low-frequency sonophoresis for transdermal drug delivery. Biol Pharm Bull 2009; 32(5): 916-20.
[31]
Tezel A, Mitragotri S. Interactions of inertial cavitation bubbles with stratum corneum lipid bilayers during low-frequency sonophoresis. Biophys J 2003; 85(6): 3502-12.
[32]
Meidani AN, Hasan M. Mathematical and physical modelling of bubble growth due to ultrasound. Appl Math Model 2004; 28(4): 333-51.
[33]
Mitragotri S, Edwards DA, Blankschtein D, Langer R. A mechanistic study of ultrasonically‐enhanced transdermal drug delivery. J Pharm Sci 1995; 84(6): 697-706.
[34]
Mitragotri S, Blankschtein D, Langer R. Ultrasound-mediated transdermal protein delivery. Science 1995; 269(5225): 850-3.
[35]
Clarke L, Edwards A, Graham E. Acoustic streaming-an in vitro study. Ultrasound Med Biol 2003; 29(5): S214-5.
[36]
Zhang N, Wu Y, Xing R, Xu B, Guoliang D, Wang P. Effect of Ultrasound-Enhanced Transdermal Drug Delivery Efficiency of Nanoparticles and Brucine. BioMed Res Int 2017; 2017: 1-8.
[37]
Terahara T, Mitragotri S, Kost J, Langer R. Dependence of low-frequency sonophoresis on ultrasound parameters; distance of the horn and intensity. Int J Pharm 2002; 235(1-2): 35-42.
[38]
Mitragotri S, Farrell J, Tang H, Terahara T, Kost J, Langer R. Determination of threshold energy dose for ultrasound-induced transdermal drug transport. J Control Release 2000; 63(1-2): 41-52.
[39]
Merino G, Kalia YN, Delgado-Charro MB, Potts RO, Guy RH. Frequency and thermal effects on the enhancement of transdermal transport by sonophoresis. J Control Release 2003; 88(1): 85-94.
[40]
Herwadkar A, Sachdeva V, Taylor LF, Silver H, Banga AK. Low frequency sonophoresis mediated transdermal and intradermal delivery of ketoprofen. Int J Pharm 2012; 423(2): 289-96.
[41]
Laugier P, G. Haïat. Introduction to the physics of ultrasound. In: Bone Quantitative Ultrasound2011 Springer . 29-45.
[42]
Tachibana K, Tachibana S. Transdermal delivery of insulin by ultrasonic vibration. J Pharm Pharmacol 1991; 43(4): 270-1.
[43]
Smith NB, Lee S, Maione E, Roy RB, McElligott S, Shung KK. Ultrasound-mediated transdermal transport of insulin in vivo through human skin using novel transducer designs. Ultrasound Med Biol 2003; 29(2): 311-7.
[44]
Tachibana K. Transdermal delivery of insulin to alloxan-diabetic rabbits by ultrasound exposure. Pharm Res 1992; 9(7): 952-4.
[45]
Zorec B, Jelenc J, Miklavčič D, Pavšelj N. Ultrasound and electric pulses for transdermal drug delivery enhancement: Ex vivo assessment of methods with in vivo oriented experimental protocols. Int J Pharm 2015; 490(1-2): 65-73.
[46]
Slayton MH. Methods and Systems for Ultrasound Assisted Delivery of a Medicant to Tissue 2018. Google Patents
EP3265168A1
[47]
Tezel A1. Sens A, Tuchscherer J, Mitragotri S. Frequency dependence of sonophoresis. Pharm Res 2001; 18(12): 1694-700.
[48]
Tezel A, Dokka S, Kelly S, Hardee GE, Mitragotri S. Topical delivery of anti-sense oligonucleotides using low-frequency sonophoresis. Pharm Res 2004; 21(12): 2219-25.
[49]
Zimon RL, Lerman G, Elharrar E, et al. Ultrasound targeting of Q-starch/miR-197 complexes for topical treatment of psoriasis. J Control Release 2018; 284: 103-11.
[50]
Kline-Schoder A, Lee Z, Zderic V. Ultrasound-enhanced drug delivery for treatment of onychomycosis. J Ultrasound Med 2018; 37(7): 1743-52.
[51]
Gupta J, Prausnitz MR. Recovery of skin barrier properties after sonication in human subjects. Ultrasound Med Biol 2009; 35(8): 1405-8.
[52]
Schoellhammer CM1, Polat BE, Mendenhall J, et al. . Rapid skin permeabilization by the simultaneous application of dual-frequency, high-intensity ultrasound. J Control Release 2012; 163(2): 154-60.
[53]
Schoellhammer CM. Srinivasan S2, Barman R, et al. Applicability and safety of dual-frequency ultrasonic treatment for the transdermal delivery of drugs. J Control Release 2015; 202: 93-100.
[54]
Han Y, Zhao Q, Yu D, Liu Z. Treatment of chest wall tuberculosis with transdermal ultrasound-mediated drug delivery. Exp Ther Med 2015; 9(4): 1433-7.
[55]
Bhatnagar S, Kwan JJ, Shah AR, Coussios CC, Carlisle RC. Exploitation of sub-micron cavitation nuclei to enhance ultrasound-mediated transdermal transport and penetration of vaccines. J Control Release 2016; 238: 22-30.
[56]
Soto F, Mishra RK, Chrostowski R, Martin A, Wang J. Epidermal Tattoo Patch for Ultrasound-Based Transdermal Microballistic Delivery. In: Advanced. Mater Technol 2017; 2(12): 1700210.
[57]
Soto F, Jeerapan I, Silva‐López C, et al. Noninvasive Transdermal Delivery System of Lidocaine Using an Acoustic Droplet-Vaporization Based Wearable Patch 2018. 1803266.
[58]
Nguyen H, Banga AJP. Electrically and Ultrasonically Enhanced Transdermal Delivery of Methotrexate. Pharmaceutics 2018; 10(3): 117.
[59]
Shirouzu K, Nishiyama T, Hikima T, Tojo K. Synergistic effect of sonophoresis and iontophoresis in transdermal drug delivery. J Chem Eng of Jpn 2008; 41(4): 300-5.
[60]
Chapin N, Hung M, Larsen W, Pramil V. Optimization of Transdermal Drug Delivery by Hydrogel-Enhanced Sonophoresis 2015.
[61]
Chen B, Wei J, Iliescu C. Sonophoretic enhanced microneedles array (SEMA)-Improving the efficiency of transdermal drug delivery. Sens Actuators B Chem 2010; 145(1): 54-60.
[62]
Petchsangsai M, Rojanarata T, Opanasopit P, Ngawhirunpat T. The combination of microneedles with electroporation and sonophoresis to enhance hydrophilic macromolecule skin penetration. Biol Pharm Bull 2014; 37(8): 1373-82.
[63]
Park D, Yoon J, Park J, Jung B, Park H, Seo J. Transdermal drug delivery aided by an ultrasound contrast agent: an in vivo experimental study. Open Biomed Eng J 2010; 4: 56-62.
[64]
Kost J, Pliquett U, Mitragotri S, Yamamoto A, Langer R, Weaver J. Synergistic effect of electric field and ultrasound on transdermal transport. Pharm Res 1996; 13(4): 633-8.
[65]
Zorec B, Zupančič Š, Kristl J, Pavšelj N. Combinations of nanovesicles and physical methods for enhanced transdermal delivery of a model hydrophilic drug. Eur J Pharm Sci 2018; 127: 387-97.
[66]
Terentyuk GS, Genina EA, Bashkatov AN, Ryzhova MV. Use of fractional laser microablation and ultrasound to facilitate the delivery of gold nanoparticles into skin in vivo. Quantum Electron 2012; 42(6): 471.
[67]
Mitragotri S, Ray D, Farrell J, et al. Synergistic effect of low‐frequency ultrasound and sodium lauryl sulfate on transdermal transport. J Pharm Sci 2000; 89(7): 892-900.
[68]
Huang B, Dong WJ, Yang GY, Wang W, Ji CH, Zhou FN. Dendrimer-coupled sonophoresis-mediated transdermal drug-delivery system for diclofenac. Drug Des Devel Ther 2015; 9: 3867-76.
[69]
Manikkath J, Manikkath A, Shavi GV, Bhat K, Mutalik S. Low frequency ultrasound and PAMAM dendrimer facilitated transdermal delivery of ketoprofen. J Drug Deliv Sci Technol 2017; 41: 334-43.
[70]
Pereira TA, Ramos DN, Lopez RF. Hydrogel increases localized transport regions and skin permeability during low frequency ultrasound treatment. Sci Rep 2017; 7: 44236.
[71]
Yamashita N, Tachibana K, Ogawa K, Tsujita N, Tomita A. Scanning electron microscopic evaluation of the skin surface after ultrasound exposure. Anat Rec 1997; 247(4): 455-61.
[72]
Wu J, Chappelow J, Yang J, Weimann L. Defects generated in human stratum corneum specimens by ultrasound. Ultrasound Med Biol 1998; 24(5): 705-10.
[73]
Mitragotri S1. Blankschtein D, Langer R. Transdermal drug delivery using low-frequency sonophoresis. Pharm Res 1996; 13(3): 411-20.
[74]
Singer AJ, Homan CS, Church AL, McClain SA. Low-frequency sonophoresis: Pathologic and thermal effects in dogs. Acad Emerg Med 1998; 5(1): 35-40.
[75]
Manikkath J, Hegde AR, Kalthur G, Parekh HS, Mutalik S. Influence of peptide dendrimers and sonophoresis on the transdermal delivery of ketoprofen. Int J Pharm 2017; 521(1-2): 110-9.
[76]
Wolloch L, Kost J. The importance of microjet vs. shock wave formation in sonophoresis. J Control Release 2010; 148(2): 204-11.
[77]
Kasetvatin C, Rujivipat S, Tiyaboonchai W. Combination of elastic liposomes and low frequency ultrasound for skin permeation enhancement of hyaluronic acid. Colloids Surf B Biointerfaces 2015; 135: 458-64.
[78]
Park D, Ryu H, Kim HS, et al. Sonophoresis using ultrasound contrast agents for transdermal drug delivery: an in vivo experimental study. Ultrasound Med Biol 2012; 38(4): 642-50.
[79]
Han T, Das DB. Permeability enhancement for transdermal delivery of large molecule using low-frequency sonophoresis combined with microneedles. J Pharm Sci 2013; 102(10): 3614-22.
[80]
Duck FA. Safety standards and regulations: the manufacturers’ responsibilities.in The Safe Use of Ultrasound in Medical Diagnosis 2000. British Institute of Radiology London ; pp. 94-101.
[81]
Haar Gt. Ultrasonic imaging: safety considerations. Interface Focus 2011; 1(4): 686-97.
[82]
Haar Gt. Ultrasonic imaging: safety considerations Interface focus, 2011: p rsfs20110029.
[83]
Food, US and A Drug Information for manufacturers seeking marketing clearance of diagnostic ultrasound systems and transducers. Rockville, MD: Center for Devices and Radiological Health, US Food and Drug Administration 1997.
[84]
Fellinger K, Schmid J. Klinik und Therapie des chronischen Gelenkrheumatismus. JAMA 1954; 155(3): 322.
[85]
Watkinson AC, Kearney MC, Quinn HL, Courtenay AJ, Donnelly RF. Future of the transdermal drug delivery market--have we barely touched the surface? Expert Opin Drug Deliv 2016; 13(4): 523-32.
[86]
Wang HL, Fan PF, Guo XS, Tu J, Ma Y, Zhang D. Ultrasound-mediated transdermal drug delivery of fluorescent nanoparticles and hyaluronic acid into porcine skin in vivo. Chin Phys B 2016; 25(12): 124314.
[87]
Lopez RF, Seto JE, Blankschtein D, Langer R. Enhancing the transdermal delivery of rigid nanoparticles using the simultaneous application of ultrasound and sodium lauryl sulfate. Biomaterials 2011; 32(3): 933-41.
[88]
Meshali MM, Abdel-Aleem HM, Sakr FM, Nazzal S, El-Malah Y. In vitro phonophoresis: effect of ultrasound intensity and mode at high frequency on NSAIDs transport across cellulose and rabbit skin membranes. Pharmazie 2008; 63(1): 49-53.
[89]
Aldwaikat M, Alarjah M. Investigating the sonophoresis effect on the permeation of diclofenac sodium using 3D skin equivalent. Ultrason Sonochem 2015; 22: 580-7.
[90]
Meshali M, Abdel-Aleem H, Sakr F, Nazzal S, El-Malah Y. Effect of gel composition and phonophoresis on the transdermal delivery of ibuprofen: in vitro and in vivo evaluation. Pharm Dev Technol 2011; 16(2): 93-101.
[91]
Escobar-Chávez JJ, Bonilla-Martínez D, Villegas-González MA, Rodríguez-Cruz IM, Domínguez-Delgado CL. The use of sonophoresis in the administration of drugs throughout the skin. J Pharm Pharm Sci 2009; 12(1): 88-115.