[1]
Garon, E.B.; Marcu, L.; Luong, Q.; Tcherniantchouk, O.; Crooks, G.M.; Koeffler, H.P. Quantum dot labeling and tracking of human leukemic, bone marrow and cord blood cells. Leuk. Res., 2007, 31, 643-651.
[2]
Warrell, Jr. R.P.; De The, H.; Wang, Z.-Y.; Degos, L. Acute promyelocytic leukemia. N. Engl. J. Med., 1993, 329, 177-189.
[3]
Combs, G.F.; Gray, W.P. Chemopreventive agents: Selenium. Pharmacol. Ther., 1998, 79, 179-192.
[4]
Ip, C.; Dong, Y.; Ganther, H.E. In: Cancer and Metastasis Reviews; Springer: Netherlands, 2002; pp. 281-289.
[5]
Allen, R.G.; Venkatraj, V.S. Oxidants and antioxidants in development and differentiation. J. Nutr., 1992, 122, 631-635.
[6]
Biju, V.; Itoh, T.; Anas, A.; Sujith, A.; Ishikawa, M. Semiconductor quantum dots and metal nanoparticles: Syntheses, optical properties, and biological applications. Anal. Bioanal. Chem., 2008, 391, 2469-2495.
[7]
Shields, A.J. Semiconductor quantum light sources. Nat. Photonics, 2007, 1, 215-223.
[8]
Smith, A.M.; Duan, H.; Mohs, A.M.; Nie, S. Bioconjugated quantum dots for in vivo molecular and cellular imaging. Adv. Drug Deliv. Rev. Inorg. Nanopart. Drug Deliv, 2008, 60, 1226-1240.
[9]
Smith, A.M.; Duan, H.; Rhyner, M.N.; Ruan, G.; Nie, S. A systematic examination of surface coatings on the optical and chemical properties of semiconductor quantum dots. Phys. Chem. Chem. Phys., 2006, 8, 3895-3903.
[10]
Gaponik, N.; Talapin, D.V.; Rogach, A.L.; Hoppe, K.; Shevchenko, E.V.; Kornowski, A. EychmuÌ^ller, A.; Weller, H. Thiol-capping of CDTe nanocrystals: An alternative to organometallic synthetic routes. J. Phys. Chem. B, 2002, 106, 7177-7185.
[11]
Kalyuzhny, G.; Murray, R.W. Ligand effects on optical properties of CdSe nanocrystals. J. Phys. Chem. B, 2005, 109, 7012-7021.
[12]
M.-P., Pileni; T., Zemb; and C., Petit Solubilization by reverse micelles: Solute localization and structure perturbation. Chem. Phys. Lett., 1985, 118, 414-420.
[13]
Chu, M.; Sun, Y.; Xu, S. Silica-coated quantum dots fluorescent spheres synthesized using a quaternary ‘water-in-oil’ microemulsion system. J. Nanopart. Res., 2008, 10(4), 613-624.
[14]
Saran, A.D.; Bellare, J.R. Green engineering for large-scale synthesis of water-soluble and bio-taggable CdSe and CdSe-CdS quantum dots from microemulsion by double-capping. Colloids Surf. A Physicochem. Eng. Asp., 2010, 369, 165-175.
[15]
Peuschel, H.; Ruckelshausen, T.; Kiefer, S.; Silina, Y.; Kraegeloh, A. Penetration of CdSe/ZnS quantum dots into differentiated vs undifferentiated Caco-2 cells. J. Nanobiotechnology, 2016, 14, 70.
[16]
Crosby, G.A.; Demas, J.N. Measurement of photoluminescence quantum yields. J. Phys. Chem., 1971, 75, 991-1024.
[17]
Palaniappan, K.; Xue, C.; Arumugam, G.; Hackney, S.A.; Liu, J. Water-soluble, Cyclodextrin-modified CdSe-CdS core-shell structured quantum dots. Chem. Mater., 2006, 18, 1275-1280.
[18]
Qu, L.; Peng, X. Control of photoluminescence properties of CdSe nanocrystals in growth. J. Am. Chem. Soc., 2002, 124, 2049-2055.
[19]
Collins, S.J.; Ruscetti, F.W.; Gallagher, R.E.; Gallo, R.C. Terminal differentiation of human promyelocytic leukemia cells induced by dimethyl sulfoxide and other polar compounds. Proc. Natl. Acad. Sci., 1978, 75, 2458-2462.
[20]
Munshi, C.B.; Graeff, R.; Lee, H.C. Evidence for a causal role of CD38 expression in granulocytic differentiation of human HL-60 cells. J. Biol. Chem., 2002, 277, 49453-49458.
[21]
Baggiolini, M.; Boulay, F.; Badwey, J.A.; Curnutte, J.T. Activation of neutrophil leukocytes: Chemoattractant receptors and respiratory burst. FASEB J., 1993, 7, 1004-1010.
[22]
Levy, R.; Rotrosen, D.; Nagauker, O.; Leto, T.L.; Malech, H.L. Induction of the respiratory burst in HL-60 cells: Correlation of function and protein expression. J. Immunol., 1990, 145, 2595-2601.
[23]
Frankel, S.R.; Eardley, A.; Heller, G.; Berman, E.; Miller, W.H.; Dmitrovsky, E.; Warrell, R.P. All-trans retinoic acid for acute promyelocytic leukemia: Results of the New York study. Ann. Intern. Med., 1994, 120, 278-286.
[24]
Tallman, M.S.; Nabhan, C.; Feusner, J.H.; Rowe, J.M. Acute promyelocytic leukemia: Evolving therapeutic strategies. Blood, 2002, 99, 759-767.
[25]
Hoffmann, F.W.; Hashimoto, A.C.; Shafer, L.A.; Dow, S.; Berry, M.J.; Hoffmann, P.R. Dietary selenium modulates activation and differentiation of CD4+ T cells in mice through a mechanism involving cellular free thiols. J. Nutr., 2010, 140, 1155-1161.
[26]
Ebert, P.S.; Malinin, G.I. Induction of erythroid differentiation in friend murine erythroleukemic cells by inorganic selenium compounds. Biochem. Biophys. Res. Commun., 1979, 86, 340-349.
[27]
Gu, J.; Royland, J.E.; Wiggins, R.C.; Konat, G.W. Selenium is required for normal upregulation of myelin genes in differentiating oligodendrocytes. J. Neurosci. Res., 1997, 47, 626-635.
[28]
Pung, A.; Mei, Z.; Yu, S-Y. In: Biological Trace Element Research; Humana Press Inc.; New Jersey: USA, 1987; pp. 19-27.
[29]
Stewart, M.S.; Davis, R.L.; Walsh, L.P.; Pence, B.C. Induction of differentiation and apoptosis by sodium selenite in human colonic carcinoma cells (HT29). Cancer Lett., 1997, 117, 35-40.
[30]
Li, J.; Zuo, L.; Shen, T.; Xu, C-M.; Zhang, Z-N. Induction of apoptosis by sodium selenite in human acute promyelocytic leukemia NB4 cells: involvement of oxidative stress and mitochondria. J. Trace Elem. Med. Biol., 2003, 17, 19-26.
[31]
Tiwari, M.D.; Mehra, S.; Jadhav, S.; Bellare, J.R. All-trans retinoic acid loaded block copolymer nanoparticles efficiently induce cellular differentiation in HL-60 cells. Eur. J. Pharm. Sci., 2011, 44, 643-652.
[32]
Medintz, I.L.; Uyeda, H.T.; Goldman, E.R.; Mattoussi, H. Quantum dot bioconjugates for imaging, labelling and sensing. Nat. Mater., 2005, 4, 435-446.
[33]
Allen, R.G. Oxygen-reactive species and antioxidant responses during development: The metabolic paradox of cellular differentiation. Proc. Soc. Exp. Biol. Med., 1991, 196, 117-129.
[34]
Speier, C.; Newburger, P.E. Changes in superoxide dismutase, catalase, and the glutathione cycle during induced myeloid differentiation. Arch. Biochem. Biophys., 1986, 251, 551-557.
[35]
Ogino, T.; Ozaki, M.; Matsukawa, A. Oxidative stress enhances granulocytic differentiation in HL 60 cells, an acute promyelocytic leukemia cell line. Free Radic. Res., 2010, 44, 1328-1337.
[36]
Savickiene, J.; Treigyte, G.; Gineitis, A.; Navakauskiene, R. In: In Vitro Cellular; Developmental Biology – Animal; Springer; Berlin: Heidelberg, 2010; pp. 547-559.
[37]
Uguz, A.; Naziroglu, M.; Espino, J.; Bejarano, I.; González, D.; Rodriguez, A.; Pariente, J. Selenium modulates oxidative stress–induced cell apoptosis in human myeloid HL-60 cells via regulation of caspase-3, -9 and calcium influx. J. Membr. Biol., 2009, 232, 15-23.
[38]
Zuo, L.; Li, J.; Yang, Y.; Wang, X.; Shen, T.; Xu, C-M.; Zhang, Z-N. In: Annals of Hematology; Springer; Berlin: Heidelberg, 2004; pp. 751-758.
[39]
Martin, S.J.; Bradley, J.G.; Cotter, T.G. HL-60 cells induced to differentiate towards neutrophils subsequently die via apoptosis. Clin. Exp. Immunol., 1990, 79, 448-453.
[40]
Guan, L.; Han, B.; Li, J.; Li, Z.; Huang, F.; Yang, Y.; Xu, C. In: Annals of Hematology; Springer; Berlin: Heidelberg, 2009; pp. 733-742.